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Gutiérrez, y Emilio L. Zapata, por acogerme en su grupo de investigación y por

su sabio consejo y su inestimable aportación, sin la cual muchos de los caṕıtulos
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que me ha brindado toda la gente de mi entorno. A mis compañeros de labora-
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Abstract

With the advent of chip multiprocessors, hardware manufactures have put a

big burden on software development community. The majority of programmers

are used to sequential programming, whereas writing high-performance multi-

threaded programs is currently mastered by a small group. Parallel programming

is a complex task that requires an understanding of new hardware concepts, al-

gorithms, and programming tools.

Transactional Memory (TM) emerges as an alternative to the conventional

multithreaded programming to ease the writing of concurrent programs. The

programmer is provided with the transaction construct, which defines a group

of computations that are executed atomically and in isolation. Transactional

memory establishes an optimistic concurrency model where transactions run in

parallel unless a conflict is detected. Conflict detection is performed transpar-

ently by the transactional system, and it is critical for performance. In case

of hardware-implemented transactional memory, conflict detection is usually car-

ried out by means of signatures, which keep track of the addresses that have been

accessed by each transaction. Such signatures are implemented as hashing struc-

tures, Bloom filters specifically, that can yield false positives when checking for

membership of an address. False positives can seriously degrade the performance

of the system.

In this thesis, we propose various signature optimizations for hardware trans-

actional memory, focusing on the reduction of the false positive rate mainly. First,

an alternative to Bloom filters is devised, called interval filter, which tracks ad-

dresses read and written by transactions in form of contiguous memory location

chunks, so-called intervals, motivated by the fact that applications frequently ex-

hibit locality access patterns. In the line of exploiting locality of reference, we

propose locality-sensitive signatures that defines new maps for the hash functions

of Bloom filters in order to reduce the number of bits inserted into the filter

for those addresses nearby located. As a result, false conflicts are significantly
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reduced for transactions that exhibit spatial locality. We also propose two signa-

ture schemes two tackle the problem of asymmetry in transactional data sets: a

multiset signature and a reconfigurable asymmetric signature. Transactions fre-

quently show an uneven cardinality of their sets of read and written addresses,

while read and write filters are usually implemented with the same size each.

Multiset signatures merge both filters in a single one, so that read and write false

positive rates equalize each other. Multiset signatures are in turn optimized by

exploiting locality and other properties of data access patterns. As regards recon-

figurable asymmetric signatures, they can be dynamically configured at runtime

to devote different amount of hardware either to the read set or to the write set

of transactions. Finally, we conducted a scalability study to show the response of

our proposals, compared to the common schemes, in the presence of contention,

large transactions and different number of cores.

All experiments in this thesis have been performed by using state-of-the-

art hardware simulators and benchmarks of the field of transactional memory.

Specifically, we used Wisconsin GEMS, along with Simics for the transactional

memory and chip multiprocessor simulators. We used the entire Stanford STAMP

benchmark suite, which is specially designed for transactional memory research,

together with EigenBench, a novel synthetic benchmark for studying orthogonal

characteristics of TM systems. Finally, CACTI and Synopsys were also used for

hardware area, power and time estimates.
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1 Introduction

With the shift to chip multiprocessors, hardware manufactures have put a

big burden on software development community at all levels. Developers of op-

erating systems, programming languages, applications, algorithms, data bases,

etc. have to begin thinking in parallel and they must be aware of many details

of the underlying hardware if they want to get the most out of chip multipro-

cessors. Researchers and hardware manufacturers are working to relieve software

programmers of such a burden. For that purpose, they have devised transactional

memory, a programming abstraction to hide low level hardware details from pro-

grammers. In this thesis, we focus on optimizing hardware transactional memory

systems, which implement the transaction abstraction at the core level.

In next sections, we introduce the shift to multiprocessors (Section 1.1), which

poses several problems for programmers that now have to deal with parallel pro-

gramming and its complexity (Section 1.2), and then we discuss the transactional

memory abstraction (Section 1.3), proposed to help on programming chip multi-

processors. Section 1.4 introduces the thesis motivation and contributions, and

the thesis structure is outlined in Section 1.5.

1.1. The Shift to Chip Multiprocessors

Almost fifty years ago, Gordon E. Moore predicted that the number of tran-

sistors on a chip would double every two years [68]. Since then, the so-called

Moore’s law has been enforced by processor manufactures. Performance, though,

has been more difficult to extract from processors in the last decade. Increasing

clock frequency was used to gain performance until ten years ago, when power

dissipation and cooling turned out to be a big concern [74]. Also, a significant

1
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part of the transistors on a chip has been devoted to implement hardware struc-

tures to extract instruction level parallelism (ILP) in the so-called superscalar

pipelined processors. However, such techniques have proved to be limited by the

amount of intrinsic parallelism of sequential applications [107], and alternative

solutions have been proposed to harness superscalar processors, like simultaneous

multithreading (SMT) [56] that fills the gap of ILP with thread level parallelism

(TLP). With SMT processors, hardware industry hinted the paradigm shift to-

wards non-automatically extracted parallelism. Finally, processor manufactures

have shifted from large SMT superscalar single processors to thin-core, single-chip

multiprocessors (CMPs) [35, 61] in order to deliver high performance computers

and to keep pace with Moore’s law in terms of performance as well.

CMPs have become mainstream in commodity processors, and thus, hardware

industry has passed the baton of exploiting these parallel machines on to the soft-

ware community. However, the majority of programmers are used to sequential

programming, and multiprocessor programming is currently mastered by a small

group. Parallel programming is more complex than programming uniprocessor

machines and requires an understanding of new hardware concepts, algorithms,

and programming tools. Thus, although hardware industry did not care about

programmers when shifted to CMPs, hardware community is working on easing

the task of programming CMPs [40].

1.2. The Complexity of Parallel Programming

Task parallelism is a common programming model for CMPs, where a parallel

application is divided into separate threads of computations that run on differ-

ent cores of the CMP. Writing multithreaded parallel programs, then, involves

decomposing the problem we want to solve, assigning the work to computational

threads, orchestrating such threads, and mapping them to the machine. Most of

these steps are new for the programmer of sequential applications, and orches-

tration might be the most complex step, as it involves synchronizing the threads.

Parallelism introduces non-determinism that must be controlled by explicit

synchronization. Shared data used in critical sections must be accessed in mutual

exclusion to avoid race conditions between threads. CMPs usually provide spe-

cial atomic instructions like compare-and-swap (CAS) or test-and-set (TS), that

atomically execute a load and a store operation over a memory location and no

other instruction can interleave between them. However, when the programmer

wants to modify more than one shared memory locations at a time (also know as

a critical section), CAS and TS instructions are not enough, and a mechanism to
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protect critical sections must be defined.

Lock-based techniques have been traditionally used to provide mutual exclu-

sion and protect critical sections. A lock is a shared variable that is modified by

using a CAS or a TS instruction so that just one thread can acquire it. Once a

thread has acquired the lock, it can execute the critical section safely as other

threads wait for the lock to be released. Hence, locks serialize the execution of

concurrent threads in critical sections affecting the performance. Besides, locks

introduce two sources of performance loss: lock overhead and lock contention.

Lock overhead is the time needed to initialize and finalize the lock, the time

needed to acquire and release the lock, and the memory space needed to allocate

the lock. Lock contention is the time consumed by threads that are struggling to

acquire the same lock. In general, there is a trade-off between lock overhead and

lock contention, depending on the lock granularity. Coarse grain locking implies

that a lock protects a large amount of data, so a few locks are needed throughout

the application, and lock overhead is low. Lock contention will be high, though,

and also serialization. On the other hand, finer lock granularity increases lock

overhead, but lowers contention and serialization. Nevertheless, the risk of dead-

lock increases by narrowing critical sections, which makes it difficult to program

and debug.

Locks may pose many problems that programmers should be aware of when

programming parallel applications. Deadlock can occur if different threads ac-

quire the same set of locks in different orders. It can be difficult to detect, par-

ticularly if the locks are not known in advance, which is the case of codes with

indirections. Also, convoying can occur if a thread holding a lock is descheduled

by the operating system, and other threads attempting to acquire such a lock

are unable to progress. Finally, lock-based techniques lack effective mechanisms

of abstraction and composition, as the programmer must know implementation

details of library functions using locks to avoid the aforementioned problems.

1.3. The Transactional Memory Abstraction

Transactional Memory (TM) [40, 45, 54] emerges as an alternative to the

conventional multithreaded programming to ease the writing of concurrent pro-

grams. TM introduces the concept of transaction, inherited from the database

field, as a convenient abstraction for coordinating concurrent accesses to shared

data, allowing semantics to be separated from implementation. A transaction is

a block of computations that appears to be executed atomically and in isolation.
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TM systems execute transactions in parallel, committing non-conflicting ones.

A conflict occurs when a memory location is concurrently accessed by several

transactions and at least one access is a write. In such a case, the conflict must

be resolved by serializing conflicting transactions, so that atomicity is preserved.

Unlike locks, in the absence of conflicts, transactions can run in parallel. Thus,

transactions replace a pessimistic lock-based model by an optimistic one. Trans-

actions also solve the abstraction and composition problems as semantics is sep-

arated from implementation and risk of deadlock or convoying is reduced due

to the absence of locks. Besides, lock overhead and contention are no longer a

problem, although new issues like livelock or other pathologies [9] can arise, but

can be solved by the TM system to provide forward guarantees.

TM systems can be implemented in software (STM) [29, 39, 41, 44, 95] and

hardware (HTM) [3, 37, 45, 69, 84]. There are hybrid and hardware accelerated

software implementations as well [26, 53, 90]. STM systems implement trans-

actions either by using locks or by utilizing non-blocking data structures [42].

However, STM implementations do not scale well and cannot compete with lock-

based applications so far. However, HTM implementations provide most of the

required TM mechanisms implemented in hardware at the core level, and they

benefit from TM advantages without the overhead of STM. Hardware manufac-

tures are introducing a form of HTM in their new CMP designs [17, 22, 87].

Hence, we focus on HTM systems in this thesis.

1.4. Thesis Motivation and Contributions

HTM systems must keep track of conflicts between transactions to ensure that

atomicity and isolation are not violated. Early systems exploited the fact that

conflicting requests to transactional memory locations could be observed through

the cache coherence mechanism [14, 28, 37, 45, 69]. These implementations can

support only transactions bounded in time and size, since a transaction is aborted

when it overflows the hardware resources. More recently TM proposals include

support for unbounded transactions, whose size and length are not constrained,

by adding certain mechanisms to handle the overflow of hardware resources [3,

7, 8, 23, 48, 84, 103, 108, 110].

Many bounded and unbounded HTM systems use signatures to hold the ad-

dresses read and written by each transaction in order to detect conflicts [14, 59,

65, 67, 97, 110]. Signatures are usually implemented as Bloom filters [6], which

are fixed hardware structures that summarize an unbounded amount of addresses

at the cost of false positives. Such false positives can harm the performance se-
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riously by provoking non-existing conflicts between transactions, particularly if

transactions read and write large amounts of data. Although small transactions

are assumed to be the common case [7, 24], several works give more insight into

the “uncommon case” of large transactions to keep such an assumption from be-

coming a self-fulfilling prophecy [8, 111]. This thesis is motivated by the fact that

HTM systems cannot easily cope with large transactions, and we contribute with

proposals to optimize signatures and enhance the performance of applications

that exhibit large transactions.

The main contributions of this thesis are the following:

An interval filter that is proposed as an alternative to Bloom filters to

track addresses read and written by transactions in form of contiguous

memory location chunks, so-called intervals. Interval filters may show a

lower false positive rate for those inserted elements that exhibit spatial

locality according to a metric space. However, the rest of elements may be

inefficiently managed. Hence, the interval filter is not a general solution.

A locality-sensitive signature based on Bloom filters that exploits memory

reference spatial locality. Previous signature designs consider all memory

addresses as uniformly distributed across the address space. However, in

real programs the address stream is not random as it exhibits some amount

of spatial and temporal locality. Our proposal defines new maps for the hash

functions of Bloom filters in order to reduce the number of bits inserted into

the filter for those addresses with spatial locality. That is, nearby memory

locations share some bits of the Bloom filter. As a result, false conflicts are

significantly reduced for transactions that exhibit spatial locality, but the

false conflict rate remain unalterable for transactions that do not exhibit

locality at all. This is specially favorable for large transactions, that usually

present a significant amount of spatial locality. In addition, as our proposal

is based on new locality-aware hash maps, its implementation does not

require extra hardware.

A multiset signature that uses a single Bloom filter to track both read and

write sets of transactions to deal with asymmetry in transactional data sets.

Read and write signatures are usually implemented as two separate, same-

sized Bloom filters. In contrast, transactions frequently exhibit read and

write sets of uneven cardinality. In addition, both sets are not disjoint, as

data can be read and also written. This mismatch between data sets and

hardware storage introduces inefficiencies in the use of signatures that have

some impact on performance, as, for example, read signatures may populate

earlier than write ones, increasing the expected false positive rate. Multiset
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signatures equalizes the false positive rate of read and write signatures and

yield better results in most cases. Different alternatives were also studied

to take advantage of some important properties of data access patterns,

like either the significant amount of transactional memory locations that

are both read and written, or the locality property.

A reconfigurable asymmetric signature that can be dynamically configured

at runtime to devote different amount of hardware either to the read set

or to the write set of transactions. This signature design is an alternative

to the common scheme, and to the proposed multiset signatures, to deal

with asymmetry in transactional data sets in an effective way. We do not

study a reconfiguration on a per-transaction basis. Instead we provide a

heuristic to statically set the configuration of the signature at the beginning

of the application, based on the average read set to write set ratio of its

transactions.

A scalability study is carried out to show the response of our proposals,

compared to the common schemes, in the presence of contention, large

transactions and different number of cores.

A thorough analysis and simulation of all signatures proposed in this thesis

is performed, including statistical studies of false positives and a full eval-

uation of signature performance using state-of-the-art simulation tools and

benchmarks used widespread in TM literature.

The aforementioned contributions have been published in international peer

reviewed conferences [79, 81, 82, 83], workshops [80] and journals [77, 78] ranked

by the ISI Journal Citation Reports (JCR).

1.5. Thesis Structure

The remainder of this thesis is structured in the following way:

Chapter 2 introduces the basics of transactional memory focusing on its

semantics. Next, an overview of the main TM implementations proposed in

the literature is presented, along with a description of the HTM extensions

that hardware manufactures are planning to deploy on their forthcoming

CMPs. Finally, we discuss related work on signature conflict detection.
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Chapter 3 outlines the methodology we have followed to evaluate our pro-

posals. We describe the simulation tools and the benchmark suite chosen

for experimentation.

Chapter 4 deals with interval filters, an alternative to Bloom filters, that is

a locality-aware approach that we propose to tackle large transactions that

exhibit some amount of spatial locality.

Chapter 5 presents locality-sensitive signatures as an enhancement of Bloom

filters in the line of harnessing the spatial locality property of applications,

without adding hardware complexity.

Chapter 6 describes the multiset and reconfigurable asymmetric signature

proposals to deal with asymmetry that most transactional applications usu-

ally exhibit in their data sets.

Chapter 7 studies the scalability of the proposed signature schemes in terms

of contention, transaction size and speedup.

The last section concludes the thesis and suggests certain possible lines for

future work.





2
Background and Related

Work

This chapter presents a background on transactional memory (TM) starting

from an overview of its semantics and requirements in Section 2.1. Section 2.2

focuses on various implementations of TM systems, both software and hardware,

and summary current research on the TM topic. New TM extensions for CMPs

of main hardware manufacturers are reviewed as well in this section. Finally, this

chapter includes an overview of related work on signature conflict detection in

TM (see Section 2.3).

2.1. Transactional Memory Basics

In this section, we outline the semantics and the basics of TM from the

perspective of the programmer (see Sections 2.1.1, 2.1.2 and 2.1.3). Also, Sec-

tions 2.1.4 and 2.1.5 discuss different mechanisms required for implementing a

transactional system that complies with the semantics presented in Sections 2.1.1

to 2.1.3. This section avoids discussing implementation specifics which can be

found in Section 2.2.

2.1.1. Programmers’ View

From the programmers’ perspective, TM is a programming abstraction rather

than a whole system to support optimistic concurrency in parallel applications.

Programmers are abstracted from all the implementation mechanisms of TM and

they are provided with simple language extension constructs and clear semantics.

9
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Figure 2.1 shows various language constructs for delimiting transactions. In

the code on the left, the atomic statement is used to point out that the enclosed

instructions must be executed transactionally. We can also define an entire func-

tion as atomic. From the programmers’ view, an atomic block or function ex-

ecutes all or nothing. That is, either all instructions are executed successfully,

in which case the transaction commits and its results become visible to other

transactional and non-transactional code, or the transaction aborts leaving the

program’s state unchanged.

The semantics of transactions stem from database systems where the ACID

(Atomicity, Consistency, Isolation and Durability) set of properties applies. In

the case of TM, durability is not important since transactions work with transient

main memory data. Regarding consistency, a transaction should change the state

of the system to a different consistent state, however, the meaning of consistency

is application dependent and it must be specified by the programmer, so the

system must provide the means for the programmer to ensure consistency (see

Section 2.1.2). Finally, the TM system must ensure that transactions comply

with the rest of the properties:

Atomicity implies that a whole transaction is executed as if it is a single,

indivisible instruction.

Isolation means that changes made inside transactions do not affect the

program’s state until they have successfully committed.

With TM, programmers do not need to define a shared variable (lock) to

protect the access to other shared variables. Thus, TM allows composition, a

desirable feature for software productivity and programmability. For example,

function bar() in Figure 2.1 could be part of a library using shared resources.

In case of using transactions, the code of bar() is executed as part of the atomic

block. If locks are used, the programmer must be aware of how bar() implements

the access to shared resources to avoid possible deadlocks due to nested locks.

However, TM can deal with nested transactions, which might result of compo-

sition or can be explicitly declared by programmers. Next section discusses the

semantics of nesting alternatives in TM.

2.1.2. Nested Transactions

Transaction nesting is usually supported by TM systems to facilitate software

composition, as well as to increase parallelism and expressiveness. A nested
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atomic {

if (x != 0)

y = y + (x = bar());

}

atomic void foo {

if (x != 0)

y = y + (x = bar());

}

...

atomic {

if (x != 0)

y = y + x;

atomic closed {

x = bar();

}

}

...

...

atomic {

if (x != 0)

y = y + x;

atomic open {

x = bar();

}

}

...

Figure 2.1: TM language extension constructs for programmers.

transaction, also known as inner transaction, is a transaction entirely enclosed

by another transaction, called the outer transaction. The easiest way for TM

systems to deal with nested transactions is to flatten them so that they are part

of the outer transaction. This, although maintain correctness and composability,

can lead to performance degradation since an abort in the inner transaction

implies aborting the outer transaction as well. TM systems may support two

nested transaction alternatives to enhance parallelism and expressiveness, the so-

called closed and open nested transactions [71]. Their semantics are described

below:

Closed nested transactions: A closed transaction can abort without abort-

ing the outer transaction. In case of commit, the outer transaction can see

the changes made by the inner transaction. However, other transactions

running in the system are unable to see the changes until the outer trans-

action has successfully committed. The code in the middle of Figure 2.1

shows a language construct for closed nested transactions. In the example,

if the execution of bar() aborts, the computations of the outer transaction

are not wasted.

Open nested transactions: Open transactions add more expressiveness to

TM systems and can improve program performance. An open transaction

releases isolation of data on commit. That is, its changes become visible not

only to the outer transaction but also to all other transactions running in

the system. Even if the outer transaction aborts later on, the changes made

by open nested transactions persists. On abort, open transactions behave

like closed ones. The rightmost example in Figure 2.1 shows a language

construct for open transactions. They are useful for enhancing parallelism

in certain situations like allowing garbage collectors, or for library codes.

However, open transactions might alter the consistency of the system, for
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example, if a call to malloc() was executed by the inner transaction and

the outer transaction eventually aborts. So, the TM system must provide

the means for the programmer to ensure consistency. TM systems usually

allow the definition of compensating actions (it would be a call to free() in

the given example) to be executed in case of the outer transaction aborts.

Another construct to enhance transaction parallelism can be supported by

some TM systems: early-release [44]. Early-release allows a transaction to re-

move addresses from its transactional read-set before commit. Thereby, other

transactions can write to those addresses without generating a conflict with the

releasing transaction. Early-release is similar to open transactions, but it only

applies to reads. Also, the programmer must guarantee that early-release does

not violate the overall application atomicity and consistency, which rises the com-

plexity of using early-release to be similar to that of using fine-grain locks [98].

2.1.3. Weak and Strong Isolation

When using transactions, programmers must be aware of how the TM system

tackles the interaction between transactional and non-transactional code. Two

different types of isolation can be defined in TM systems [62]: weak and strong

isolation.

Weak isolation guarantees isolation between transactions. However, non-

transactional code can access data written inside transactions without protec-

tion from the TM system, thus breaking atomicity and isolation of transactions.

This way, non-transactional accesses may introduce data races on transactional

data that could lead to undefined behaviour of the system. Then, to prevent un-

desirable inconsistencies, programmers should explicitly protect every access to

shared data with a transaction. Another option is to separate transactional from

non-transactional code by means of barriers, but it can degrade performance and

scalability.

On the other hand, strong isolation guarantees isolation between transactions

and between transactional and non-transactional code. With strong isolation,

instructions outside transactions automatically become single-instruction trans-

actions. This fact implies that atomicity and isolation are enforced in every situ-

ation. However, consistency could not be always guaranteed since a programmer

might incorrectly delimit the bounds of transactions. Unfortunately, controlling

whether or not programmers properly place the boundaries of transactions is out

of control of the transactional system.
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2.1.4. Data Versioning

To enforce TM semantics introduced in preceding sections, TM systems must

implement certain mechanisms of data versioning. Data versioning, also known

as version management, implements the policies that tells the TM system what

to do with data modified inside transactions. Two policies can be considered:

Eager data versioning : With eager version management transactions mod-

ify data in place with the risk that other transactions can see the new ver-

sions of the data, thus violating isolation. In this case, the data versioning

policy must be supported by the conflict detection system (see Section 2.1.5)

to ensure TM semantics by controlling the access to shared data. On abort,

eager versioning systems must restore the old values of data modified by the

aborting transaction. Therefore, a private segment of memory, also known

as undo log, is needed to keep track of those old values. Commits, though,

are faster in eager data versioning systems since new values are already in

place.

Lazy data versioning : Lazy version management consists in leaving old

values in place while maintaining new values in private memory. Then,

the TM system must ensure that a transaction always accesses the last

updated value of its data. With lazy versioning, isolation is guaranteed

and conflict detection is in charge of enforcing atomicity. This policy also

needs a private write buffer, or redo log, to store new values. Aborts are

faster now, since the system only needs to discard the new values in the

write buffer. Commits are slower, though, as lazy data versioning systems

must update memory data with the new values stored in the write private

buffer of transactions.

Some subtleties can be exposed when dealing with data versioning, granular-

ity of data versioning and weak isolation described in the preceding section. Let’s

give an example: suppose a TM system implementing the eager version manage-

ment policy at cache line granularity, that is, whenever a transaction modifies

one word of a cache line the TM system stores the whole line as it was before the

modification, just in case of a potential abort, to restore the old value. First, a

transaction writes a word of a cache line, and next, a piece of non-transactional

code modifies a different word of the same cache line, which do not implies a real

conflict. Then, the transaction happens to abort, thus undoing the modifications

made. Since data versioning granularity is cache-line-wise, the old value of the

entire cache line is restored, and non-transactional work is undone causing unpre-
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dictable behaviour. These subtleties can be difficult to debug when programming

a TM system and suppose a challenge for weak isolation systems.

The problem outlined above can be avoided in systems that enforce strong

isolation, as non-transactional instructions are managed as if enclosed by single-

instruction transactions and isolation is guaranteed. However, there exists the

possibility of these kind of data races in strong isolation TM systems if granularity

of data versioning is coarser than granularity of conflict detection. This way, in

the example above, the conflict would not be detected and the work could be

undone in case of abort.

2.1.5. Conflict Detection and Resolution

A TM system requires a mechanism for conflict detection and resolution to

ensure atomicity, and some times isolation as we saw in the preceding section.

In a CMP with multiple threads running concurrently, the memory system sees

instructions from different threads interleaving each other arbitrarily. A bunch

of instructions can execute atomically by serializing the execution and avoiding

such interleaving, but it degrades performance. However, TM is able to allow

thread interleaving while it controls atomicity by means of conflict detection and

resolution, thus maximizing the opportunities for thread level parallelism (TLP).

A conflict is detected when more than one transaction accesses the same

memory location and at least one of them modifies it. A conflict might be detected

as well in case that conflict detection granularity is coarser than one memory

location. Then, false conflicts due to false sharing can arise.

Conflict detection can be implemented following two different approaches, the

same way as data versioning in Section 2.1.4: eager or lazy conflict detection.

Eager conflict detection: If conflicts are detected eagerly, the TM system

must keep track of every transactional access “on-the-fly”, so that the con-

flict is detected just before it occurs. This way of detecting conflicts is also

known as pessimistic (pessimistic within the optimistic framework of TM)

because it supposes that conflicts frequently arise and must be detected on

arising to keep transactions from working with stale data.

Lazy conflict detection: With lazy conflict detection, the TM system allows

transactions to access shared data concurrently, while conflict detection is

deferred to commit time. Notice that transactions should work in isolation

with the last valid version of the data. This kind of conflict detection is said
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Figure 2.2: Examples of possible deadlock situations in TM systems.

to be optimistic, since it encourages parallelism if conflicts are infrequent.

Conversely, if conflicts are often encountered, lazy conflict detection could

readily serialize execution, since the TM system would abort those trans-

actions that worked with stale data. Eager conflict detection mechanisms

would ameliorate the amount of wasted execution in such a case.

A TM system needs to know which memory locations have been accessed

by each transaction to detect conflicts and then resolve them. To keep track of

such accesses, each transaction usually owns two sets: the read set (RS), which

holds the address of every location read by the transaction; and the write set

(WS), holding the addresses written by the transaction. The implementation of

these sets depends on whether the TM system is software or hardware imple-

mented. For hardware systems, RS and WS storage supposes a problem since an

unbounded number of addresses (transaction size is not known in advance unless

the system restricts the size of them) must be recorded in a fixed-size structure.

Once a conflict is detected, the TM system has to resolve it. This is called

conflict resolution and is typically implemented by a contention manager, whose

aim is ensuring forward progress and avoiding deadlock situations. There are

two ways of resolving a conflict: (i) to abort all transactions involved except

one of them, in which case a great amount of computation might be discarded;

and (ii) to let one transaction continue whereas the others stall, waiting for

the running transaction to commit and release isolation of the conflicting data.
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Stalling transactions can reduce the number of wasted cycles but it involves the

risk of deadlock.

Figure 2.2 shows two different situations of possible deadlock when resolving

conflicts using stalls. In the example on the left, transaction 1 begins and then it

reads location A. After a while, other thread begins a transaction, Xact 2, that

modifies location B and then, tries to write location A. At this point, a conflict is

detected and the contention manager decides to stall the “youngest” transaction,

Xact 2. Xact 1 is allowed to continue. Then, Xact 1 happens to read location B

that was previously written by Xact 2. A conflict is detected, and stalling Xact 1

would cause a deadlock situation. Hence, the contention manager must abort one

transaction and it chooses Xact 2. The example on the right shows an scenario

involving three transactions. Xact 1 and Xact 2 exhibit the same dependencies

as in the former example, however, another transaction enters the scene, Xact

3, which is stalled because of a dependency with Xact 2. Then, when Xact 1

conflicts with Xact 2, a threefold conflict arise and the contention manager has

to decide whether to abort Xact 2 or Xact 3 to prevent the possible deadlock.

Example scenarios in Figure 2.2 seem to be trivial to resolve, but they can

complicate more in the presence of multiple transactions. Contention managers

might need much information from the system, like timestamps to discern how

long transactions have been running, a list of stalling transactions and a list

of dependencies between transactions. Also, different conflict resolution policies

can be implemented [94] and changed across workloads, across concurrent trans-

actions in a single workload, or across different phases of a single transaction

to fit workload characteristics [36]. Thus, a contention manager might suppose

too much state to implement in hardware, so several hardware systems trap to

software contention managers to handle conflicts (see Section 2.2.2).

2.2. Overview of Transactional Memory Imple-

mentations

The preceding section deals with transactional memory from the point of

view of its semantics and requirements. In this section, we review the main TM

implementations that can be found in the literature, both software and hardware,

showing which policies were chosen in each implementation from those discussed

in the last section. Software transactional memory (STM) will be briefly discussed

in Section 2.2.1, whereas we will give more insight into hardware transactional

memory (HTM) in Section 2.2.2, since we focus on HTM systems in this thesis.
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2.2.1. Software Transactional Memory

The term software transactional memory (STM) was introduced by Shavit and

Touitou in [95], where they proposed a STM system that provided a transaction

abstraction approach slightly different from that we have seen in Section 2.1.

They required the programmer to provide in advance the set of variables that

a transaction might access. Thus, the system would acquire ownership of them

so that the transaction could execute until commit without the possibility of

roll-back.

Many proposals have been developed since Shavit and Touitou first proposed

STM. The majority of them do not require a programmer to specify in advance

the locations that a transaction is going to access. However, these systems seem

to introduce overhead to such an extent that STM has been said to be a toy

for researchers [13]. Nevertheless, research on STM is still ongoing due to its

advantages over HTM systems, namely, its flexibility on implementing a full

range of sophisticated algorithms, its facility to be modified and integrated with

existing systems, and the absence of fixed-size hardware structures that might

impose limitations.

STM systems are often implemented as runtime systems that profile and in-

strument the source code to provide the functionality of a TM system. Such

runtime systems can be implemented using locks to provide atomicity. We will

see later other nonblocking STM systems that do not use locks in their imple-

mentation. Lock-based STM systems like Bartok-STM [41], Multicore RunTime

STM (McRT-STM) [89], Transactional Locking 2 (TL2) [29] and TinySTM [32]

use two-phase locking from databases [30] to avoid deadlocks. Locks, which can

be associated to data on a per-object or a per-word basis, are acquired in one

phase, as transactions write data or when commit begins, an no locks are released

until the shrink phase, at commit end, in which locks are released and no locks

can be acquired.

Bartok-STM and McRT-STM implement eager version management to avoid

log lookups on all read operations, since searching transaction logs for earlier

stores by the same transaction does not scale in case of large transactions. Con-

flict detection is also carried out eagerly, except for reads, which are validated

lazily on commit. Thus, transactional read overhead due to conflict detection is

kept low by just logging the addresses and some metadata for those data being

read. Therefore, as the read set of transactions usually outnumbers the write

set (see Chapter 6), additional contention in the memory system is avoided and

conflict-free transactions stay as simple and fast as possible.
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While conflict detection on concurrent writes are arbitrated by locks, detecting

a read-write conflict requires the use of versions when reads are detected lazily.

Versioned locks combine a conventional lock for writes and an integer variable

for reads, so-called version. The version of the lock is incremented whenever it

is released, which means that the data protected by the lock was successfully

updated. Then, transactional reads store into the read set the version number of

the lock protecting the data, and eventually, on commit, all versions in the read

set are checked against the current versions of the locks. If one version number

do not match, a read-write conflict is detected and has to be resolved. McRT-

STM and Bartok-STM use a version number incremented on a per-object basis

whereas TL-2 uses a global clock, which is incremented each time a transaction

commits.

TL-2 uses lazy version management, so updates are held in private memory.

Then, versioned locks of data updated in transactions are acquired at commit

time. If one lock cannot be acquired the transaction fails, as a write-write con-

flict is detected. Next, the read set is traversed to check the version number of

each location read against the global version clock acquired when the transac-

tion began. If one version number is greater than the global clock, a read-write

conflict is detected and the transaction fails.

TinySTM is similar to TL-2 but uses eager version management and imple-

ments a form of hierarchical locking in which version numbers are hold at slot

granularity, with such slots covering regions of the entire address space. These

slots are implemented as a shared array and hold the number of commits to

locations in the region represented by the slot.

On the other hand, nonblocking STM systems, like Herlihy’s Dynamic STM

(DSTM) [44], Object-based STM (OSTM) [34] or Word-based STM (WSTM) [39],

provide progress guarantees, atomicity, and isolation in the absence of locks by

using non-blocking algorithms performing single-word atomic operations. DSTM

is object-based. A transaction is defined as an object with function members for

beginning and committing it. DSTM also requires that objects accessed by trans-

actions are wrapped by a TMObject class. This class has a pointer to a locator

class whose fields are three pointers pointing to the last transaction that opened

the object in write mode, the old value for the object, and the new value for the

object. Then, when a transaction writes an object, it changes the locator pointer

of the object to point to a new locator object. In turn, the new locator points to

the transaction that writes the object. Indirections make atomicity possible by

using an atomic CAS to change pointers of locators. DSTM uses eager conflict

detection both on reads and writes.



2.2. Overview of Transactional Memory Implementations 19

OSTM is similar to DSTM. However, OSTM uses lazy conflict detection, and

a TM object refers to a transaction descriptor instead of using a locator. As

a nonblocking system without indirections we have WSTM, which is a word-

based STM system. Thus, data is normally stored in the heap, instead of being

wrapped by a transactional object, and transactional information is associated to

each datum in the heap by means of a hash function. WSTM uses lazy conflict

detection.

STM systems usually decompose transactional read and write operations into

several stages segregating conflict detection, data versioning and data accessing.

This decomposition allows compiler optimizations like instruction reordering or

redundancy elimination.

Finally, the majority of STM proposals provide a programming abstraction

that is slightly different from the atomic block abstraction described in Sec-

tion 2.1.1. The programmer must ensure that every read and write operation,

or every object used in transactions, is tagged as transactional, and it can be

tedious and unattractive for the programmer. Several works [41, 43] point out

that the atomic block abstraction is easily achievable by a compiler, which can

automatically generate the required code.

2.2.2. Hardware Transactional Memory

Hardware transactional memory (HTM) systems have several advantages over

STM systems. HTM has lower overheads, is less dependent on compiler optimiza-

tions, and more transparent to the programmer than STM, all memory accesses

in a transaction are implicitly transactional and third-party libraries do not need

to be transaction aware. In addition, HTM systems can provide strong isolation

warranties without requiring changes to non-transactional code, and can have

better power and energy profiles.

Next, we present the first HTM proposal that was the base for subsequent

HTM systems. Then, we discuss the main HTM proposals we can find in the

literature, and, to conclude, we deal with commercial CMP’s that are including

HTM extensions as a feature for enhancing concurrency.

First HTM Approach

HTM, and the TM abstraction, was first proposed by Herlihy and Moss [45]

in 1993 as short transactions intended to replace short critical sections. They

introduced changes to three levels of a CMP architecture:
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Processor level : Each processor maintains two flags, one to indicate whether

the processor is executing transactional or non-transactional code (a trans-

action active flag), and another to indicate the transaction status (ongoing

or aborted) whenever the active flag is set. The transaction active flag is

implicitly set when a transaction executes its first transactional operation.

Also, the processor maintains a private transactional cache, besides the pri-

vate primary cache. The transactional cache is a small full-associative cache

that holds transaction updates, both old and new versions. The primary

cache and the transactional cache are exclusive so an entry may reside in

one or the other, but not both.

ISA level : Six new instructions are added to the instruction set architecture

to support transactions: a transactional load (LT), a transactional load in

exclusive mode (LTX) hinting that the location to be accessed is likely to be

updated, a transactional store (ST) to write a location into the transactional

cache, and COMMIT, ABORT and VALIDATE instructions. On commit, the

status flag is checked and returned to the user. If it is set to true, new

versions in the transactional cache are tagged as non-transactional, and old

versions are discarded. The transaction active flag is set to false as well.

If the status flag is set to false, then the transaction must abort because a

conflict was detected during its execution. Thus, old versions are tagged as

non-transactional, new versions discarded and the transaction active flag is

set to false. Moving data from the transactional cache to the primary cache

is not needed as the transactional cache is a part of the memory hierarchy

and snoops the network.

Cache coherence level : The cache coherence protocol is modified by adding

three more messages. One for requesting a location because of a transac-

tional load, other one for requesting a location because of a transactional

exclusive load, and a busy message to signal conflicts. When a transaction

loads a location, its transactional cache is searched in case the location was

previously written by the same transaction. In case of a miss, the value

is requested to other processors. Such processors check their transactional

caches (this is performed in one cycle as caches are associative). If at least

one processor hits its transactional cache, a busy message is sent to the

requesting processor. Then, the requesting processor sets its status flag to

false (aborted) and subsequent transactional loads and stores do not cause

network traffic and may return arbitrary values. Therefore, conflict reso-

lution can be said to be eager, although the conflict does not resolve until

the program executes a commit/abort/validate instruction that checks the

status flag.
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typedef struct {

Word deqs;

Word enqs;

Word items[QUEUE_SIZE];

} queue;

unsigned queue_deq(queue *q) {

unsigned head, tail, result, wait, backoff = BACKOFF_MIN;

while (1) {

result = QUEUE_EMPTY;

tail = LTX(&q->enqs);

head = LTX(&q->deqs);

/* queue not empty? */

if(head != tail) {

result = LT(&q->items[head % QUEUE_SIZE]);

/* advance counter */

ST(&q->deqs, head + 1);

}

if (COMMIT()) break;

/* abort => backoff */

wait = random() % (01 << backoff);

while (wait--);

if (backoff < BACKOFF_MAX) backoff++;

}

return result;

}

Figure 2.3: Example of programming Herlihy and Moss’ HTM system. Fragment

of a producer/consumer benchmark [45].

Figure 2.3 shows a fragment of a producer/consumer benchmark that uses

Herlihy’s HTM system. The transaction begins whenever the program executes

instruction tail = LTX(&q->enqs). If a conflict is detected when that instruc-

tion is executed, the status flag of the processor is set to false (aborted), and

subsequent instructions will not produce valid data. Then, when the transaction

executes the COMMIT() instruction, the program realizes that there was a conflict

and resolves the conflict by aborting the transaction. In this case, abort actions

consist in an adaptive back-off to reduce contention, and a retry of the transac-

tion. Subsequent HTM systems usually provide the simple atomic programming

abstraction of Section 2.1.1, instead of the explicit transactions proposed by Her-

lihy and Moss.
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Data Versioning
Lazy Eager

Conflict
Detection

Lazy
Stanford TCC
Urbana-Champaign Bulk

—

Eager
MIT LTM
Intel/Brown VTM

MIT UTM
Wisconsin LogTM
Wisconsin TokenTM

Table 2.1: An HTM taxonomy.

Herlihy and Moss proved that transactions outperformed conventional locks

because no memory accesses were required to acquire and release locks. Also,

they pointed out how optimistic concurrency of transactions improved the per-

formance over locks serialization. However, Herlihy’s HTM system posed certain

drawbacks. If transactions run for too long, they could be aborted by interrupts

or conflicts. Also, the larger the data set of transactions, the larger the trans-

actional cache needed, which can be prohibitive as far as it is a full-associative

cache, and the more likelihood of conflict as well.

Herlihy’s HTM lays the foundations for succeeding HTM systems. Most of

them introduce changes at the three aforementioned levels of a CMP and try

to solve the drawbacks of the system regarding transaction length, interrupts

and hardware limitations. Next, we will see main HTM systems after Herlihy’s

and how some of them try to virtualize resources to hide HTM limitations to

programmers.

Main HTM Proposals

Table 2.1 shows an HTM taxonomy of main HTM systems depending on

conflict detection and data versioning policies. Let us see the continuation of

the work of Herlihy, called Virtual TM (VTM) [84]. VTM comprises two parts,

one purely hardware part which resides in processor local buffers and provides

fast transactional execution for common case transactions that do not exceed

hardware resources and are not interrupted. And a programmer-transparent

overflowed part that resides in data structures in the application’s virtual memory

combined with hardware machinery, that allows transactions to survive overflow,

page faults, context switches, or thread migration.

VTM assigns each transaction a status word (XSW), which is used to com-

mit or abort the transaction by modifying it atomically with a CAS instruction.
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VTM also defines a transaction address data table (XADT), which is the shared

log for holding overflowed transactional data. Both structures reside in the appli-

cation’s virtual address space. However, they are invisible to the user. The VTM

system, implemented in either hardware or microcode, manages these structures

by means of new registers added to each thread context that point to them and

are initialized by the application. When a transaction issues a memory operation

that is a cache miss, it must be checked against overflowed addresses by travers-

ing the XADT. Traversing the XADT might be too slow, so VTM provides two

mechanisms for not interfering with transactions that do not overflow. First, an

XADT overflow counter records the number of overflowed entries. If it is set to

zero, no traffic is needed as it is locally cached at each processor. Second, an

XADT filter (XF), implemented as a software counting Bloom filter (see Sec-

tion 2.3.5), provides fast detection of conflicts. A miss in the filter guarantees

that the address does not conflict, and a hit triggers an XADT walk.

Large TM (LTM) [3] is an eager-lazy HTM system like VTM, but slightly

differs from VTM in the way it manages cache evictions. In LTM, each cache

block is augmented with a transactional bit and each cache set with an overflow

bit. If a processor requests a transactional block whose overflow bit is set, then

the block will be in a hash table in uncached main memory. Such a hash table

structure is managed by a hardware state machine transparently to the user. The

operating system allocates and resize the structure as required by the hardware

state machine which holds a register pointing to the hash table structure. Unlike

VTM, LTM only allows transactions that fit in main memory and do not run

longer than a scheduler time-slice.

On the lazy-lazy cell in Table 2.1 we can find Transactional Coherence and

Consistency (TCC) [37]. This proposal defines a new coherence and consistency

model in which transactions are the basic unit of parallel work. Writes within

a transaction do not require coherence requests as they are locally stored in a

write buffer. Regarding consistency, all memory accesses from a processor that

commits earlier happen before the memory accesses of processors that commits

later, regardless of if such accesses actually interleaved each other. TCC relies on

broadcast to send the write buffer of a transaction to all processor so that they

can check if there were a conflict. Local caches have transactional read and write

bits for conflict detection. Also, unordered and ordered commit is allowed due

to the commit control system which commits transactions depending on their

phase number. Transactions with the same phase number can commit in any

order, while transactions with a lower phase number must commit earlier than

transactions with a greater phase number. Bulk HTM [14] also relies on broad-

casting to detect conflicts. However, it only sends the addresses of the locations
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written by the transaction, which are stored in a local and compact way in form

of signatures. Signatures were first proposed in Bulk HTM as Bloom filters (see

Section 2.3). Bulk HTM uses caches to hold new data versions transparently to

the cache itself. TCC and Bulk allows larger transactions than Herlihy’s first

HTM system but they do not solve the overflow problem of write buffers and

local caches. Broadcasting is a feature that limits scalability as well.

On the eager-eager side, we have Unbounded TM (UTM) [3]. UTM is the

base for LTM, however, UTM allows transactions whose memory footprint can

be nearly as large as virtual memory, like VTM. UTM holds, in virtual memory,

a structure called XSTATE which represents the state of all transactions running

in the system. Besides, each memory block is augmented with a transactional

read/write bit and a pointer to the old value of the block that resides in an entry

of the XSTATE structure. Such an entry of the XSTATE structure, in turn, has

a pointer to the memory block. So, the XSTATE structure holds a linked list

of memory blocks whose transactional read/write bits are set. Conflict detection

is carried out eagerly, so every memory access operation must check the pointer

and bits of the memory block to detect any conflict. The access to the XSTATE

and memory block metadata is done by means of several hardware registers that

hold pointers to their base and bounds. For non-overflowed transactions, UTM

implements a conventional cache-based HTM for performance.

LogTM [69] uses per-thread software-resident logs for version management in-

stead of hardware buffers or caches like TCC and Bulk. Like in UTM, LTM and

VTM, version management is held in virtual memory. However, UTM and VTM

add significant complexity to their global logs and LTM’s log is not cacheable,

so traversing such structures is too expensive in terms of performance. LogTM

optimizes the access to the logs by caching their entries. Also, only old val-

ues are stored and LogTM uses hardware structures to mask such writes and

to prevent multiple buffering of the same location. LogTM is leveraged to sup-

port virtualization by decoupling transactional state from caches in its signature

edition version, called LogTM-SE [110]. Support for nested transactions [70] is

also included. Wisconsin’s group proposed a different approach of HTM, called

TokenTM [8], in which transactional metadata is not only used for overflows like

in VTM and UTM. Instead, each memory block is augmented with a number of

tokens. A transaction must acquire at least one token to read the block and must

have all tokens to write it.

Many works propose enhancements to the baseline systems discussed above

and give more insight into HTM. Bobba et al. [9] shows a set of possible patholo-

gies that can harm the performance of HTM systems, and propose conflict reso-

lution policies to solve them. Waliullah and Stenstrom [106] propose starvation-
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free protocols for transactions in TCC-like systems. Ramadan et al. propose

DATM [85] to commit conflicting transactions if the conflict can be solved by

forwarding data between them. Pant and Byrd [76] use value prediction to en-

hance parallelism, achieving an effect similar to that of forwarding. Lupon et

al. [58] propose fast recovery aborts for transactions in LogTM-like systems by

maintaining non-speculative values in the higher levels of the memory hierarchy.

Waliullah et al. [105] also propose enhancements in speculative data manage-

ment. Titos et al. [102] propose a hybrid-policy HTM system which can switch

from eager to lazy version management depending on data contention. Negi et

al. [73] improve scalability of lazy data versioning systems whose burden resides

in broadcasts. Finally, we can find several hybrid approaches that enhance STM

by hardware accelerating certain TM mechanisms [5, 53, 55, 67, 90, 96, 97].

HTM in Commercial Off-The-Shelf Multiprocessors

Main hardware manufacturers are introducing HTM extensions into their

new CMP systems. Sun Microsystems has been working on the Rock chip-

multithreading processor (CMT) [17], the first to support HTM. Each Rock

processor has 16 cores, each configurable to run one or two threads. Then, a

single core can run two application threads, giving each thread hardware support

for executing ahead (EA) under long-latency instructions, like a data cache miss

or a TLB miss. When the core encounters one of these long-latency instructions,

a checkpoint of the architectural state is taken, the destination register of the

long-latency instruction is marked as not available (NA) in a dedicated NA reg-

ister file, and the long-latency instruction goes into a deferred queue (DQ) for

later reexecution. Every subsequent operation with an operand marked as NA

is enqueued in the DQ. Instructions whose operands are available are executed,

and their results are stored in the speculative register file. When the long-latency

operation completes, a replay phase is performed in which the deferred instruc-

tions are read out of the DQ and reexecuted. A different execution mode devotes

core resources to run one application thread with even more aggressive simul-

taneous speculative threading (SST), which uses the second thread to execute

in parallel the replay phase of the EA. EA is an area-efficient way of creating a

large virtual issue window. So, Rock supports HTM by using most of the mecha-

nisms that enable EA. In addition, two new instructions have been added to the

instruction set: checkpoint fail-pc to denote the beginning of a transaction,

which accepts a pointer to compensating action code used in case of abort, and

commit to denote the end of the transaction. Also, cache lines include a bit to

mark lines as transactional. Invalidation or replacement of a cache line marked as
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transactional aborts the transaction. Stores within the transaction are placed in

the store queue and sent to the L2 cache, which then tracks conflicts with loads

and stores from other threads. If the L2 cache detects a conflict, it reports the

conflict to the core, which aborts the transaction. When the commit instruction

begins, the L2 cache locks all lines being written by the transaction. Locked lines

cannot be read or written by any other threads, thus ensuring atomicity. Rock’s

TM supports efficient execution of moderately sized transactions that fit within

the hardware resources.

AMD is working on its Advanced Synchronization Facility (ASF) [22], an

AMD64 architecture extension for HTM support. ASF adds six new instruc-

tions to the ISA: speculate denotes the beginning of a transaction and takes a

checkpoint of the thread context for recovery, lock mov is used to load and store

transactional data, watchr and watchw start a conflict detection operation for

the operand, release can be used as the early-release construct discussed in Sec-

tion 2.1.2, commit ends the transaction and makes all speculative modifications

instantly visible to all other CPUs, and abort, that also ends the transaction and

discards the modifications. These ISA extensions provide a transactional abstrac-

tion similar to that of Herlihy and Moss’ HTM, in which transactional accesses

must be explicitly annotated. However, AMD’s compiler [22] is able to provide

the conventional atomic abstraction for C/C++, while it annotates instructions

transparently to the user (stack known local variables may not be annotated as

transactional to save hardware resources). ASF implements a straightforward

requester-wins conflict resolution policy, which always aborts the transaction al-

ready containing the conflicting element in its working set, and provides strong

isolation. AMD has explored several implementations of ASF: a cached-based

implementation that keeps the transactional data in each CPU core’s L1 cache

and uses the regular cache-coherence protocol for conflict detection, and an imple-

mentation that introduces a new CPU data structure called the locked-line buffer

(LLB). The LLB is implemented as a full-associative memory similar to Herlihy

and Moss’ transactional cache. The advantage of an LLB-based implementation

is that the cache hierarchy does not have to be modified. A hybrid approach

combining the cached-based implementation and the LLB is also explored.

Intel has released details of its Transactional Synchronization Extensions

(TSX) [87] for the future multicore processor code-named Haswell. TSX provides

two interfaces to denote transactional code. The first one is known as Hardware

Lock Elision (HLE), and involves two prefixes for instructions: XACQUIRE and

XRELEASE. HLE is compatible with the conventional lock-based programming

model. So, software written using the HLE prefixes can run on both legacy hard-

ware without TSX and new hardware with TSX, since the prefixes correspond
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to the REPNE/REPE IA-32 prefixes which are ignored on the instructions where

XACQUIRE and XRELEASE are valid. Thus, the programmer uses the XACQUIRE

prefix in front of the instruction that is used to acquire the lock which is pro-

tecting the critical section. The processor treats the indication as a hint to elide

the write associated with the lock acquire operation, and a transaction is open

instead. If the transaction aborts, the processor will roll back the execution and

then resume it non-transactionally. In case of a processor not supporting TSX,

the lock is acquired normally, and the execution is serialized. The second inter-

face provided by TSX is known as Restricted Transactional Memory (RTM) and

allows more flexibility in transaction declaration than HLE. RTM adds three new

instruction to the ISA: XBEGIN, XEND and XABORT. Intel does not provide imple-

mentation details of TSX, but gives some hints which suggest that TSX is a best

effort approach to HTM, like Sun’s Rock and AMD’s ASF. That is, they do not

guarantee successful execution of transactions of any size and duration, and they

abort transactions that exceed on-chip resources for HTM, or encounter certain

events like page faults, caches misses or interrupts. Thus, Intel enumerates a

list of runtime events that may cause transactional execution to abort, namely,

synchronous and asynchronous exceptions, memory operations other than write-

back cacheable type operations, executing self-modifying code, excessive sizes

for transactional regions, conflicting requests to a cache line accessed within a

transaction (strong atomicity is ensured), and so on.

2.3. Related Work on Signatures

TM systems must record the address of every memory access issued by trans-

actions in order to detect conflicts between them. These addresses are sorted out

into a read set (RS) and a write set (WS), and they are usually stored in separate

structures that are private to each thread context. As conflict detection devices,

these structures should not tolerate false negatives (undetected true conflicts)

but may assume false positives (false conflicts). In addition, as RS and WS sizes

are unknown in advance (unbounded transactions), the number of addresses to

be tracked should not be limited. Finally, test and insertion operations should

be fast.

Fulfilling the requirements above, Ceze et al. [14] proposed signatures as a

compact way of representing the read and write sets of transactions by means of

Bloom filters, a time and space-efficient hash structure. Since then, signatures

have been broadly adopted by several software, hardware and hybrid TM sys-

tems to detach conflict detection from caches or accelerate conflict detection. TM
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proposals that include signatures are FlexTM [97], LogTMSE [110], SigTM [67],

STMlite [65], DynTM [59], ... Also, BulkSC [15] proposes a novel way of provid-

ing sequential consistency [1] in CMP’s that is simple to implement and offers

performance comparable to release consistency, by using an underlying HTM-like

architecture based on signatures.

Signatures solve certain constraints associated to caches. Modifying caches

to track transactional information poses problems on virtualization, since trans-

actions are limited to cache sizes, scheduling time-slice (quantum), migration

problems,... Also, cache memories are critical fine-tuned structures that should

not be modified by including additional hardware.

Next section describes the Bloom filter structure. Section 2.3.2 deals with hash

functions for Bloom filters. Section 2.3.5 discusses different variants of Bloom

filters. Section 2.3.3 shows a problem that affect Bloom filters: the birthday para-

dox problem. Finally, Section 2.3.4 describes different signature implementations

found in the literature.

2.3.1. The Bloom Filter

The Bloom filter [6] was devised by Burton H. Bloom in 1970 as a time and

space-efficient hash coding method with allowable errors. Figure 2.4 shows the

design of a Bloom filter. It comprises a bit array of 2m bits and k different hash

functions that map elements into k randomly distributed bits of the array. Such

an array is initially set to 0, and inserting an element into the filter consists

in setting to 1 the k bits indexed by the hash functions. Test for membership

consists in checking that those k bits are asserted. As the array is fixed-sized

there exists the possibility of errors of testing, called false positives. For instance,

in Figure 2.4, elements x, y and z are inserted in the filter and the bits indexed

by the hash functions (k = 2 in this case) are set to 1. When we test for element

w, it happens to be mapped into bits that have already been set to 1, so the test

is a false positive. However, false negatives are not possible.

The probability of false positives in regular Bloom filters [10, 92] can be

formulated as follows. Consider a Bloom filter that maps a space of N elements,

N = 2n, into an array of M bits (indexes), M = 2m, m ≤ n, through a family of

k hash functions, {h0, h1, ..., hk−1}. As each hash function maps one element into

one of the M possible bits of the array, and assuming that hash functions yield

uniformly distributed indexes (see Section 2.3.2), the probability that one bit is

set to 1 in the filter is 1
M . Hence, the probability that a bit is set to 0 is 1 − 1

M .

Consider a sequence of q elements, {x0, x1, ..., xq−1} , to be inserted in the filter.
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Figure 2.4: Design of a Bloom filter. A false positive scenario.

After the insertion of those q elements using k hash functions per element, the

probability that a bit is still 0 is:

pZERO(M, q, k) =

(

1 −
1

M

)qk

, (2.1)

assuming that the hash functions are independent each other. The exponent qk

can be called the occupancy of the filter.

The probability of getting a positive match on testing for membership of an

element is:

pPOSITIVE(M, q, k) = (1 − pZERO)k =

(

1 −

(

1 −
1

M

)qk
)k

, (2.2)

as k bits are checked in each test. A test for membership is a true positive for

the q elements inserted in the filter, but not for the remaining Q − q elements

that also get a positive match, being Q the number of total positives. So, the

probability of getting a false positive is the probability of getting a positive on a

test of an element that has not been inserted. According to Bayes’ rule:

pFALSE POSITIVE(M, q, k) = pPOSITIVE(M, q, k)
Q − q

Q
≈

≈ pPOSITIVE(M, q, k).

(2.3)

This approximation assumes that the number of total positives in the space under

test is much larger than the number of inserted addresses, Q ≫ q, thus, Q−q
Q ≈ 1.

Such an assumption is valid when N ≫ M .

Expression 2.3 can be simplified by using the Taylor series expansion of the

exponential function, ex =
∑∞

n=0
1
n!x

n. In our case, since 1/M ≪ 1, the expo-
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Figure 2.5: False positive probability of regular Bloom filters. M = 1024 and

k ∈ {1, 2, 4, 8}.

nential function can be approximated by the two first terms of the series:

e−1/M = 1 −
1

M
+

1

2M2
−

1

6M3
+ ... ≈ 1 −

1

M
,

so pZERO(M, q, k) =
(
1 − 1

M

)qk
≈ e−

qk

M , and the probability of false positive is:

pFALSE POSITIVE(M, q, k) ≈
(

1 − e−
qk

M

)k

. (2.4)

Figure 2.5 shows the probability of false positives given by Expression 2.3,

for different values of k and a filter of M = 1024 bits. The number of elements

inserted in the filter is shown in the x-axis. We can see that better false positive

probability is expected for low populated filters and a high number of hash func-

tions (k ∈ {4, 8}). However, the more hash functions the Bloom filter has, the

earlier the filter populates and the higher the false positive probability is expected

for high populated filters. Section 2.3.4 discusses the bibliography references that

study the k trade-off in the context of TM.

The false positive rate given by Expression 2.3 is an approximation that as-

sumes the indexes are independent each other and N ≫ M . Bose et al. [10]

proposes an exact formula for the false positive rate in any case, for which they

model the problem as a problem on balls and urns. The resulting expression for
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the exact false positive rate is the following:

pFALSE POSITIVE(M, q, k) =
1

Mk(q+1)

M∑

i=1

iki!

(
M

i

){
qk

i

}

, (2.5)

where

{
qk

i

}

is the Stirling number of the second kind.

Expression 2.3 underestimates the false positive rate in some cases with re-

spect to the exact rate given by Expression 2.5, but we will use the former ex-

pression along this thesis as it is very accurate when the assumptions are fulfilled,

which is the case, and it is more intuitive and much easier to evaluate.

2.3.2. Hash Functions for Bloom Filters

In the preceding section, we have assumed that hash functions yield uniformly

distributed indexes. However, real hash functions are usually biased. Ramakr-

ishna et al. [86] study two different types of hash functions that are commonly

used for hardware applications: bit selection and XOR hashing. Figure 2.6 de-

picts the implementation of each method. With bit selection, the i hash function,

0 ≤ i < k, is made up by extracting the bits i, i + k, i + 2k,... from the address.

On the other hand, in XOR hashing, each hash function consists of an XOR

gate tree per hash bit. Bit selection hash functions are more hardware-efficient

than XOR ones since they can be implemented by simply hard-wiring the bits

corresponding to each hash function. However, they provide less-quality random

indexes than XOR hashing functions.

Carter and Wegman [12] presents three classes of hash functions, H1, H2 and

H3, whose expected time to map a given sequence of inputs into their corre-

sponding indexes is linear in the length of the sequence. H1 amounts to taking

the last bits of the address to make the index, as long as the number of indexes

is a power of 2. The class H2 is similar to H3, but the functions require less time

and more space, since the address is first mapped into a longer bit string, but one

with fewer 1’s. The H3 class belongs to the XOR hashing type of hash functions,

and it has been proved to exhibit a high quality behavior for memory address

streams, close to random distribution [92]. Vandierendonck et al. [104] defines

the H3 class of hash functions as a linear transform between an n-bit word and

an m-bit word: hi :GF (2)1×n → GF (2)1×m, being GF (2) the Galois field of two

elements, under the bitwise XOR. Then, as H3 functions map addresses linearly
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Figure 2.6: Bit selection and XOR hashing function implementation.

into indexes, they can be completely characterized by a matrix in GF (2)n×m:

H =








hn−1,m−1 hn−1,m−2 · · · hn−1,0

hn−2,m−1 hn−2,m−2 · · · hn−2,0

...
...

...

h0,m−1 h0,m−2 · · · h0,0








. (2.6)

Essentially, it is a (n × m) binary matrix whose coefficient hi,j is 1 if the bit

i of the address is an input bit of the XOR tree which computes the bit j of the

index. The hash output y = h(x) = [ym−1...y1y0] of an n-bit address with bi-

nary expression x = [xn−1...x1x0] corresponds to a map GF (2)1×n → GF (2)1×m,

which is computed as follows:

[ym−1...y1y0] = [xn−1...x1x0]H. (2.7)

For example, a hash function mapping a space of 24 addresses into 22 possible

indexes is:

h(x) = [x3x2x1x0]







1 0

1 1

0 1

1 0







= [x3 ⊕ x2 ⊕ x0, x2 ⊕ x1].

Thus, a generic Bloom filter with k hash functions can be completely charac-

terized by k H3 matrices {H0,H1, ...,Hk−1}.
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2.3.3. The Birthday Paradox Problem: a motivation

The birthday paradox is an unintuitive statistical problem which can be for-

mulated in the following manner: Within a group of about 23 people, you will

have a good chance of two people sharing the same birthday. Actually, the exact

probability of two people sharing the birthday in a group of 23 people is 50%. By

the pigeonhole principle, the probability is 100% within a group of 366 people,

as there are 365 days in a year.

The birthday paradox problem can be applied to signatures in TM sys-

tems [112] as they use Bloom filters with hash functions that map a set of ad-

dresses (people) into a reduced set of bits that comprise the Bloom filter array

(days in the year). Then, signature-based TM systems are supposed to encounter

conflicts even when transactions update a small set of memory locations. It could

be worse if transactions’ data sets are large (see Figure 2.5), signatures are small,

or if applications spawn many threads.

The birthday paradox problem has motivated most of the works discussed in

Section 2.3.4 and the signature enhancements proposed in this thesis.

2.3.4. Signature Implementations

Bloom filters can be implemented as a k-ported SRAM in its regular version.

However, Sanchez et al. [92] proposed the parallel Bloom filter as an alternative

hardware-efficient implementation to regular Bloom filters. Multiported SRAMs

require much hardware as they grow quadratically with the number of ports.

Figure 2.7 shows the implementation of both regular and parallel filters. Whereas

the regular filter is implemented as a k-ported SRAM, the parallel one consists

of k subfilters implemented as single-ported SRAMs, yielding the same or better

false positive rate. The probability of a bit of a particular subfilter being 0 after

q insertions is:

pZERO(M, q, k) =

(

1 −
1

M/k

)q

, (2.8)

following the same notation and assumptions of Section 2.3.1. Thus, the proba-

bility of getting a false positive in a parallel Bloom filter is:

pFALSE POSITIVE(M, q, k) ≈ pPOSITIVE(M, q, k) =

(1 − pZERO)k =

(

1 −

(

1 −
1

M/k

)q)k

,
(2.9)
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which appears to be different from the Expression 2.2 for regular Bloom filters.

However, by the Taylor series approximation of ex, we get that, if k/M ≪ 1, then

1 − 1
M/k ≈ e−k/M , so:

pFALSE POSITIVE(M, q, k) ≈
(

1 − e−
qk

M

)k

, (2.10)

which is the same false positive rate as the true Bloom signature, shown by

Expression 2.4, as long as k/M ≪ 1, the normal case. In the same work, Sanchez

et al. found that H3 hash functions perform better than bit-selection, and four

or more such hash functions should be used.

Cuckoo-Bloom signatures are also proposed in [92]. They are intended to

perform like high-k Bloom filters for small transactions, while yielding the false

positive rate of Bloom filters with few hash functions when transactions are large.

Cuckoo-Bloom filters act like a hash table in the beginning of the transaction.

Addresses are stored as if in a set-associative cache, where tags and data are

the result of hashing the address with two independent hash functions, and sets

are indexed by other hash function. When a set is full, the filter executes a

sequence of evictions and re-insertions to store the incoming address. If such a

sequence takes too long, the set is converted into a regular Bloom filter with low
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k. The addresses in the set are previously stored in a separate storage space

for eventually being inserted into the newly converted Bloom filter. Lookups are

fast, but insertions are more complicate, and the filter needs certain control logic,

additional storage, a bit array to signal whether a set has been converted into a

Bloom filter or not, and other structures (comparators,...) that complicate the

design and might rise the hardware budget.

An alternative hardware-efficient implementation of hash functions, Page-

Block-XOR hashing (PBX), is proposed in [111]. They use the concept of entropy

to find the highest randomness bits of the address, to allow reducing the hardware

complexity of hash functions. Notary [111] also proposes a technique to reduce

the number of asserted bits in the signature. Their approach is based on segre-

gating addresses into private and shared sets. Then, only the shared addresses

are recorded. This solution requires support at the compiler, runtime/library and

operating system levels. In addition, the programmer must define which objects

are private or shared, which might be a difficult and error-prone task.

Titos et al. [101] propose a directory-based scheme for detection of conflicts

in HTM. They detach conflict detection from the L1 caches and shift it to the

directory level. This approach optimises eager conflict detection HTM systems

with an unordered and scalable network, when running applications with high

number of conflicts. The network traffic is reduced up to 30% since the directory

does not have to send signature check messages to the cores. Furthermore, by

having the signatures of each core centralised into the directory, they can perform

more efficiently, since transactions usually access the same shared data, which is

not kept redundantly into the directory.

Orosa et al. [75] propose FlexSig as a flexible hardware signature implemen-

tation to change dynamically the amount of signatures per core according to

system requirements. FlexSig groups all signatures in the system into a pool of

signatures and assigns them to the cores on demand. It relies in the fact that

all cores are not always running transactional code at the same time. Thus, if

there are only two transactions running in the system, they will use half of the

signature pool each. If other cores start a transaction, they demand signature

allocation to the pool and it is repartitioned to meet the necessities of all the

cores running transactions in the system, without incurring false positives.

Choi and Draper [19] propose adaptive grain signatures, that keep the history

of transaction aborts and dynamically changes the input bit range to the hash

functions on the abort history. The aim of this design is to reduce the number of

false positives that harm the execution performance.

Recently, Choi et al. [20, 21] have proposed a unified signature design that
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merges read and write signatures into a single one. Two variants of unified signa-

tures are shown. One which tracks transactional accesses regardless of whether

they are reads or writes, and another which includes a helper signature to filter

out read-read conflicts. Chapter 6 proposes signatures schemes that also consider

the basic unification of read and write filters, but this baseline design is optimized

by a different strategy, based on partially keeping separate read and write hash

functions that operate on the same subfilter. Both works are complementary.

2.3.5. Bloom Filter Variants

Several Bloom filter variants have been proposed in the literature in order to

adapt generic Bloom filters to different contexts of application. Next, we show

related Bloom filter proposals to that we propose in this thesis.

Distance-sensitive Bloom filters [51] use locality-sensitive hashing [16, 47] to

formulate queries of similarity in metric spaces using compact representations of

objects. That is, instead of testing for membership as in a generic Bloom filter, we

can query whether an element is close to other element in a set. Locality-sensitive

hashing is used, since we can define hash functions such that the hash values of

two elements that are close each other can match with a given probability. The

distance-sensitive Bloom filter defines a family of locality-sensitive hash functions,

{h : N → M}, that are (r1, r2, p1, p2)-sensitive with respect to a metric space

(N, d), where d is the distance metric over the set N , if r1 < r2 , p1 > p2 , and

for any x, y ∈ N ,

if d(x, y) ≤ r1 then Pr(h(x) = h(y)) ≥ p1, and

if d(x, y) > r2 then Pr(h(x) = h(y)) ≤ p2.

With such a family of hash functions, the distance-sensitive Bloom filter can

provide a fast answer without comparing against the entire set, M , or without

performing a full nearest-neighbor query, which can be very useful in the context

of distributed databases, networking and even DNA sequencing. However, the

filter can produce false positives when x is far away from y and the filter response

is positive, and false negatives when x is close to y and the filter answers that it

is far away.

Hao et al. propose combinatorial Bloom filters [38] as a fast dynamic multiset

membership testing data structure. They use a single Bloom filter and multiple

sets of hash functions to map elements depending on the set (group) identifier.

The group identifier points out which sets of hash functions have to be used to
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map the elements into that group. For instance, let 5 be the number of hash

function sets, and we want to insert an element x of the group number 7. Such

a group has assigned the sets of hash functions 1, 3 and 4. Then, x is hashed

using such sets of hash functions and the corresponding bits of the Bloom filter

are asserted. In order to determine the group of an element y, such an element is

hashed using the 5 sets of hash functions. If sets 1, 3 and 4 result in a 1, element

y can be identified as being a member of group number 7. Other group identifiers

use different sets of hash functions. Combinatorial Bloom filters need many filter

checks especially when there are large number of sets.

Fan et al. [31] propose a counting Bloom filter that allows not only insertion

and test for membership operations, but also deletion of an element from the filter.

This is done by maintaining a counter per bit of the array. All the counters are

initially set to 0, and whenever an element is inserted or deleted, the counters

indexed by the hash functions are incremented or decremented accordingly. A

test for membership checks that each counter indexed by the hash functions is

non-zero. A false negative can arise if a counter overflows, as subsequent deletions

can set the counter to 0 and the overflowing insertions are not taken into account.

To keep the filter from yielding false negatives, the counter can be turned off on

overflow so that deletions are not allowed on that counter. On the other hand,

the spectral Bloom filter [25] uses counters to allow the filtering of elements with

multiplicities.

The Bloomier filter [18] propose to associate a value to each element inserted

in the filter, thus transforming a set of keys into a map of pairs (key, value). The

simplest form of a Bloomier filter is that of having a map that only permits two

values, e.g. 0 and 1. Thus, the Bloomier filter has two Bloom filters, one that

tracks the keys whose associated value is 0, and another for the keys whose value

is 1. On a search for a given key x, both filters are probed. If only the first filter

is a hit, x has a high probability of having associated the value 0, and vice-versa.

If both filters happen to have the key, this look up procedure has to be recursively

repeated on a set of pairs of smaller filters that contain the keys that produced a

false positive in the preceding stage. On inserting a key y with value 0, we insert

y in the first filter and check if the second filter also contains y. If so, y has to be

inserted in the next pair of smaller filters, and so forth. In order to allow general

values other than 0 and 1, we can have one simple Bloomier filter per bit of the

value.





3 Methodology

This chapter deals with the methodology we followed to evaluate our propos-

als. The simulation environment we have used for experimentation is described

in Section 3.1, and the benchmark suite is reviewed in Section 3.2.

3.1. Simulation Framework

For evaluating the proposals in this thesis we have used a full system execution-

driven simulator called Simics [60], which is introduced in Section 3.1.1, along

with the HTM module for Simics called GEMS [63]. GEMS is provided by the

Wisconsin Multifacet Project as open-source and it is described in Section 3.1.2.

Section 3.1.3 deals with the target CMP system organization and Section 3.1.4

outlines the TMtool, a straightforward functional TM simulator that we have

built using Intel’s PIN [57].

3.1.1. Simics Simulator

Simics is a system level instruction set simulator. Unlike emulators that are

focused on executing a program, Simics was designed not only to run programs,

but also to gather runtime information, and to allow user-developed add-ons.

Simics is a system level simulator since it can boot unmodified operating system

kernels.

Simics can run on different host machines on top of several host operating

systems. In our case, we have run Simics 2.2.19 on SUSE Linux 10.1 over an

39
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Figure 3.1: Simics+GEMS architecture: the memory module, Ruby, can be

driven by either Simics or Opal’s out-of-order processor module.

8-core AMD64 architecture. As regards the target system, Simics implements a

list of processors and servers from ARM to Intel amongst others, regardless of the

host type. We configured Simics to target a Serengeti system that simulates the

Sun Fire 6800 server with UltraSPARC-III Cu processors, since GEMS module

is tied to the ISA of such processors. We installed Solaris 10 on the simulated

machine with the development tools for compiling the benchmarks.

Figure 3.1 shows the roll of Simics within the simulation framework. Simics

provides an in-order model by default, where benchmarks run on top of the OS

and Simics functionally simulates the instruction set and executes program in-

structions sequentially. This simulation model is fast and simple but it fails to

provide a detailed execution timing model. However, Simics’ in-order model can

be extended by adding timing models to control the timing of memory opera-

tions and processor instructions. Simics provides interfaces by which a processor

can stall while a memory operation (an instruction fetch or a data transaction)

is being simulated by a detailed memory timing model. Likewise, Simics pro-

vides the user with a micro-architectural interface for implementing out-of-order

processors. In out-of-order mode, the user’s processor timing model tells Simics

whenever an instruction can be committed. By using these features, Wisconsin

Multifacet group developed a multiprocessor detailed timing toolset for Simics

called GEMS, which is described in next section.
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3.1.2. GEMS Toolset

The Wisconsin Multifacet Project’s General Execution-driven Multiprocessor

Simulator (GEMS) is a toolset for Simics released under GNU GPL [33]. GEMS

decouples simulation functionality and timing by leveraging Simics functional

simulator with two main modules (see Figure 3.1):

1. Opal : This module models a SPARC v9 processor with dynamic schedul-

ing. Opal uses the micro-architectural interface provided by Simics for

filling the pipeline with instructions. Then it fetches, decodes, dynamically

schedules, and executes such instructions, and it is also capable of predict-

ing branches and speculatively accessing the memory hierarchy. Once Opal

has an instruction to retire, Simics processor is instructed to advance one

instruction and Opal compares its processor state with that of Simics to

ensure a correct execution.

2. Ruby : Ruby is a timing simulator of a multiprocessor memory system.

Ruby models caches, cache controllers, system interconnect, memory con-

trollers, banks of main memory as well as the LogTM-SE HTM system [110].

Ruby implements cache coherence independent components like the inter-

connection network, cache arrays, memory arrays, message buffers, and

glue logic so that they are assigned a hard-coded timing. However, the

time count is eventually determined by how the coherence protocol man-

ages fetch and data transactions coming from the processors. For specifying

the memory coherence protocol, Ruby provides a domain-specific language

called SLICC (Specification Language for Implementing Cache Coherence).

With SLICC one is able to specify cache and directory controller state

machines in terms of states, events, transitions, and actions over memory

blocks.

Throughout this thesis, we used the Ruby module driven by Simics’ default

in-order processors. Whereas running Simics with Ruby slows down simulations

by about 125×, adding Opal’s processor model worsens the slowdown to about

300×, so Opal was discarded for simulations. With the in-order driver, Ruby

receives a Simics’ request (load, store, or instruction fetch) which is checked for

hitting the first level cache. If so, Simics is not stalled by Ruby, thus retiring the

instruction and switching to the next processor, as far as a multiprocessor setting

is concerned. If the first level cache request is a miss, Ruby stalls the processor

issuing the request and simulates the cache miss. Each processor can have only a

single miss pending, but the memory model determines the stalling time for each
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processor which in turn makes processors overtake each other, thus simulating

the memory request interleaving of real multiprocessors.

Moreover, the Ruby module adds pseudorandom delays to the latency of

memory accesses to deal with variability in simulation experiments. Variability

is a well-know phenomenon in real systems that is often ignored in simulations.

Therefore, multiple runs of each experiment were conducted to obtain confident

error bars [2] with a confidence probability greater than 95%.

Finally, Simics and Ruby maintain a communication link via Simics’ magic in-

structions. Magic instructions are special no-operation instructions (sethi n,%g0

in case of SPARC processors) that can be used within benchmarks running on

the target system to pass information to Simics modules. In this case, magic in-

structions’ main role is to place the boundaries of transactions in the benchmarks

so that Ruby’s transactional system knows when they start and end. Magic in-

structions are also used for signaling when the Ruby module must be loaded and

when it must be unloaded. In a normal simulation with Simics and Ruby, the

benchmark initializes all data structures and spawns the threads with the Ruby

module unloaded to speed up the simulation. Then, before entering the parallel

phase of the benchmark, the magic instruction is executed and Ruby is loaded to

profile the parallel execution. Once the parallel phase is done, Ruby is unloaded

an the simulation is over. The sequential phase and the spawning of the threads

are not simulated in detail, thus saving time.

3.1.3. Target System

We have used the same target system configuration for all experiments in this

thesis. Table 3.1 shows the parameters for the modeled system. The base CMP

system consists of 16 in-order, single-issue cores. Each core has a 32KB split

private L1 cache and one bank of a 8MB unified shared L2 cache, comprising a

tile from the tiled organization shown in Figure 3.2. A packet-switched intercon-

nect connects the cache banks in the tiled topology consisting of 4 clusters, each

made up of 4 cores, following a NUCA (Non-Uniform Cache Access [50]) scheme

where the access to non-local L2 cache banks is slower than that for the local

cache bank. Latencies for caches, memory and network are shown in Table 3.1

although hit/miss latency is eventually determined by the coherence protocol

and the network hops of each message needed to resolve the memory transac-

tion. Cache coherence implements the MESI protocol and maintains an on-chip

directory in L2 cache which holds a bit vector of sharers. Inclusion property is

imposed in the cache hierarchy to reduce the cache coherence complexity [4].
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Table 3.1: Base CMP system parameters.

Processor
16 in-order single-issue cores

IPC=1 for non-memory operations

L1 cache

Private
Split, 32KB instructions + 32KB data

4-way set-associative, 64B blocks
1 cycle hit latency

L2 cache

Shared banked
Unified, 8MB (16 banks of 512KB)
8-way set-associatives, 64B blocks
6/20 cycle tag/data access latency

L2 directory
Full bit-vector of sharers

6 cycle access latency

Main Memory
8GB

450 cycle access latency

Network
Packet-switched tiled interconnect

1 cycle link latency

L2 

Bank

CPU

L1

I&D

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Figure 3.2: Simulated CMP system organization.

As regards the TM system, we have used the baseline LogTM-SE HTM [110].

LogTM-SE leverages each thread context state of the CMP with the structures

shown in Figure 3.3 (green blocks marked with dashed lines). A register check-

point and the program counter for the beginning of the transaction are needed

on abort to retry the transaction. Several registers are needed to store the log

base address, the log head pointer, the depth of current transaction nesting level

and the address of the software handler called on abort. LogTM-SE also adds a

log filter that holds recently logged blocks to prevent the system from writing the

same block to the log more than once within a transaction. Finally, two signatures

are added, one to store the RS and the WS of the running thread’s transaction

and another, the summary signature, to track conflicts with suspended thread’s
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Figure 3.3: LogTM-SE hardware add-ons.

transactions. Caches are left untouched.

In our target system, cores are single-threaded and threads are bounded to

the cores (see Section 3.2.2) so summary signatures are not used. The default

eager conflict detection and eager version management schemes are used, with

the base conflict detection policy where requester stalls, retries after a backoff

time, and aborts on a possible deadlock cycle. Conflict detection is performed on

cache block granularity with signatures operating on physical addresses. Perfect

signatures keep track of every single address read or written in a transaction

without yielding false positives. They are hardware unimplementable but we use

them as a reference in our simulations.

3.1.4. TMtool: A Simple Functional TM System

Prior to include some signature proposals into the cycle accurate target HTM

simulator, we developed a straightforward functional eager-eager TM system to
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gather preliminary results and benchmarks characteristics. Intel’s PIN instru-

mentation tool [57] was used to quickly implement the system. Pin is a tool for

the dynamic instrumentation of applications and supports Linux, Windows and

MacOS binary executables for a wide range of Intel R© processor architectures.

Pin provides functionality to inject arbitrary code (written in C or C++) at

arbitrary places in the executable. Unlike other tools, Pin adds code dynami-

cally into running applications instead of statically instrumenting executables by

rewriting them.

Two components can be differentiated when instrumenting an application

with PIN: (i) instrumentation code, which decides where the analysis code is

inserted and what analysis code is to be added; and (ii) analysis code, which

is the code to execute at insertion points. PIN intercepts the execution of the

first instruction of a program and instruments it dynamically. In our case, the

instrumentation code is implemented in two different ways:

1. Alarms to detect xact_begin and xact_end: Transaction beginnings and

endings are detected via PIN’s alarms. The executable to be instrumented

must have transactions enclosed by calls to xact_begin() and xact_end(),

defined as empty functions. The application should call such functions be-

fore the beginning and after the end of a critical section. Whenever the

instrumentation alarm finds a call to xact_begin, the analysis function for

opening a transaction is inserted. We implemented the analysis function

so that a new transaction is allocated with its log, signatures and statis-

tics. The thread context is checkpointed in order to rollback in case of

abort. The analysis function also signals subsequent instructions as trans-

actional by setting an insideTransaction flag. In case of xact_end(),

the inserted analysis function is for ending the transaction, and it resets

the insideTransaction flag signaling that subsequent instructions are not

transactional anymore. Transactional statistics are also dumped into a file.

As it is an eager-eager system, log and signatures are discarded.

2. Instruction instrumentation mode: PIN offers the instruction instrumen-

tation mode which lets the tool inspect and instrument an executable a

single instruction at a time. We added an instrumentation function in this

mode and it is essentially an if-then statement in which we check if the

inspected instruction is either a memory read or a memory write and if

the insideTransaction flag is set. If the condition is true, then the anal-

ysis function for registering the memory instruction is inserted before the

instruction. If it evaluates to false, then nothing is done. In case of a mem-

ory read, the analysis function checks for a conflict with signatures of other
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transactions running in the system. If no conflict is detected, the location

is registered in the local signature. Otherwise, a conflict is signaled and

the local transaction is aborted by undoing the log and rolling back to the

checkpoint. A memory write is similar to a memory read but it stores in

the log the old value of the memory location to be written.

Our PIN TM simulator implements a naive conflict resolution policy that

aborts every transaction detecting a conflict. More complex policies supporting

transaction stall and back-off waiting like LogTM’s could have been implemented

but it implied logically ordering transactions with timestamps and implementing

a conflict handler to detect potential deadlocks. As the system was intended for

gathering some preliminary results and benchmarks characteristics, we decided

to leave it for future work.

Finally, our PIN TMtool shows statistics of the number of committed trans-

actions, the number of aborted transactions, the size of read and write sets of

transactions and statistics of the occupancy in the filters. We can get traces of

the memory footprint of given transactions and it is easy to modify for getting

other transactional numbers. Notice that certain statistics, like the number of

aborts, might depend on the interaction of threads so an application with several

running threads could yield different statistics on a single-core machine than on

a CMP. Simics, though, is platform independent.

3.2. Benchmark Suite

For the evalulation of the proposals presented in this thesis we used all the

benchmarks belonging to the Stanford’s STAMP suite [66]: Bayes, Genome,

Intruder, Kmeans, Labyrinth, SSCA2, Vacation and Yada. This suite is designed

for Transactional Memory research and includes a wide range of applications

laying emphasis on those with long-running transactions and large read and write

sets. Such benchmarks are of special interest for signature evaluation because

they put the most pressure in signatures.

3.2.1. Benchmark Description and Characterization

STAMP applications cover a wide range of computing domains and transac-

tional characteristics. Next, we provide a brief description of the eight bench-

marks comprising the suite:
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1. Bayes: This application implements an algorithm for learning Bayesian net-

works which are an important part in the machine learning domain. Learn-

ing a Bayesian network consists in maximizing a likelihood score function

which evaluates the goodness of the Bayesian network. Such maximiza-

tion is carried out by using a hill-climbing technique where an incremental

change is made to the Bayesian network iteratively until no further im-

provements can be found. The algorithm implements the network as a

directed acyclic graph (DAG) with random variables as nodes and their

conditional dependences as edges. The conditional dependences are added

to the network by analyzing the observed data.

The critical sections that calculate and add new dependencies to the net-

work are enclosed by transactions. The lock-based version of this applica-

tion is not as simple as the transactional approach. A two-phase locking

method with deadlock detection is needed for modifications in the graph.

2. Genome: This application is located in the domain of bioinformatics. Genome

implements a gene sequencing program that reconstructs the gene sequence

from segments of a molecule of DNA which may have been extracted with

a DNA sequencing instrument, or DNA sequencer, in terms of nucleotide

bases: adenine, guanine, cytosine, and thymine (AGCT). The DNA se-

quencer can yield many duplicates of gene segments. Therefore, the first

step of the algorithm is deleting duplicate segments for which it is used

a hash set that stores unique elements only. The second step is match-

ing segments using the Rabin-Karp string search algorithm. Rabin-Karp’s

algorithm speeds up the search of substrings in a string by using a hash

function. Each thread is constructing its own gene partition of unmatched

segments from a pool. The final step is building the entire sequence and it

is not parallelized.

Transactions are used in the first step of the algorithm to ensure concurrent

access to the hash set. In the second step, transactions are used in the access

of to the global pool of unmatched segments as threads may try to remove

the same segment. Deadlock avoidance has not to be implemented by using

transactions.

3. Intruder : This application is located in the domain of security and imple-

ments a network intrusion detection system (NIDS) based on signatures.

Network packets are scanned to search for matches against a known set of

intrusions. This search is performed in parallel through three stages: (i)

capture, where a packet fragment is dequeued from a FIFO queue; (ii) re-

assembly, where the fragments belonging to the same session are stored in
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a self-balancing tree; and (iii) detection, where the reassembled packet is

checked against the data base of signatures of known attacks.

The complexity of the reassembly stage makes the implementation with

fine-grain locks a fairly difficult programming task, to such an extent that

the algorithm is usually implemented with coarse-grain synchronization.

The transactional version also uses coarse-grain transactions but allowing

optimistic concurrency.

4. Kmeans: This application is located in the interdisciplinary field of data

mining and it is an example of unsupervised machine learning. The K-

means algorithm is used to separate a set of objects into K clusters or

groups with similar characteristics. Each thread is assigned a partition of

the object space and each works iteratively on its partition. Updates to

the center of the clusters are protected with a transaction since different

threads might be working on the same center. The larger the K the lesser

probability of conflict between threads. Consequently, Kmeans can benefit

from optimistic concurrency of transactions.

5. Labyrinth: This application is located in the domain of engineering and it

is an implementation of Lee’s algorithm to calculate the paths between a

set of starting and ending point pairs in a three-dimensional grid. It can

solve problems inherent in wiring diagramming, and optimal route finding.

Each thread takes a pair of points and calculates the path between them.

A conflict occurs when paths from different threads overlap in some point.

Each thread first privatizes the grid at the beginning of the calculation of

the path to reduce conflicts. At the end of the calculation, the thread must

check the global grid for overlaps with the new path, since it might have

been working with a stale grid due to path additions by other threads.

The transactional version of Labyrinth does not need the implementation

of deadlock avoidance techniques required by the lock-based approach.

However, to improve the performance attained by transactions, an early-

release [44, 98] technique is used to delete the locations read in the priva-

tization of the grid from the transaction’s signature to reduce conflicts. As

early-release is not implemented in our HTM baseline system we used open

nested transactions to enclose the privatization of the grid. Thus, once

the grid has been read by a thread without any conflict, the open nested

transaction is committed releasing isolation of the global grid.

6. SSCA2 : This application implements four graph kernels that are frequently

used in the scientific domain ranging from computational biology to secu-

rity. SSCA2 stands for Scalable Synthetic Compact Applications 2 and it
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is based on large, directed, weighted multi-graphs, graphs that allow mul-

tiple or parallel edges between two nodes. The suite implements Kernel 1

which is the graph construction. The algorithm parallelizes the insertion of

nodes into the graph and it uses adjacency arrays that must be protected

to ensure correctness when accessed concurrently.

The transactional version of this application protects the access to the ad-

jacency arrays with transactions. This kind of operation can benefit from

optimistic concurrency.

7. Vacation: This application is located in the domain of on-line transaction

processing and implements a client-server program of a travel reservation

system based on a non-distributed database. The database consists of four

interrelated tables implemented as Red-Black trees which are self-balancing

binary trees. Vacation consists of several client threads interacting with the

database via the system’s transaction manager. Three types of interactions

are allowed: reservations, cancellations, and updates. Each of these client

interactions comprises a critical section as it modifies the database.

In this case, using transactions simplifies the parallelization of the code.

Implementing an efficient lock-based version of Vacation can be complicated

due to all data structures involved.

8. Yada: Standing for Yet Another Delaunay Application, this application

implements the Ruppert’s algorithm for Delaunay mesh refinement and it

is located in the scientific domain. The algorithm starts from a queue

of triangles to refine. Each thread picks a triangle from the queue and

executes the refinement. Threads refine the triangle depending on both the

surrounding triangles in the mesh of triangles (implemented as a graph),

and the mesh boundary segments (implemented as a set). The refinement

might yield new triangles to be refined, so they are inserted in the queue

for idle threads. The algorithm continues until the queue is empty.

Transactions make it simpler to parallelize the code of Yada. One transac-

tion encloses the extraction of triangles from the queue. The whole retri-

angulation is enclosed by a transaction, and this part, which concurrently

modifies the shared graph, is specially difficult to program under a thread-

based model.

Although a characterization of the benchmark suite depends on the given

workload setup, we can find in Table 3.2 a qualitative description of the bench-

marks in terms of transaction length, read set and write set sizes, time spent

inside transactions and amount of contention (probability of conflict). We can



50 Chapter 3. Methodology

Table 3.2: STAMP benchmark suite qualitative characterization.
Benchmark Xact Length RS/WS Size Time in Xact Contention

Bayes Long Large High High

Genome Medium Medium High Low

Intruder Short Medium Medium High

Kmeans Short Small Low Low

Labyrinth Long Large High High

SSCA2 Short Small Low Low

Vacation Medium Medium High Medium

Yada Long Large High Medium

see that STAMP provides us with a wide range of distinct characteristic bench-

marks. In the suite prevails medium to large transactional set benchmarks which

fits our interest in signatures. Finally, benchmarks like Kmeans which usually ex-

hibits small RS/WS sizes can be changed to show higher data set sizes by means

of the input parameters. This way, we will show input parameters and charac-

teristics, amongst other useful data, in each chapter for quantitative workload

characterization.

3.2.2. Benchmark Adaptation to the Simulation TM Sys-

tem Environment

STAMP benchmarks were adapted to the simulation TM system environment,

i.e. Wisconsin’s LogTM-SE implemented in GEMS, by introducing the following

changes to avoid certain undesirable interferences or interactions:

1. Avoiding OS interference: We used the pset bind system call from Solaris

OS to bind each thread of the application to a logical processor set. The

psrset utility was used to create the logical processor sets in the simulated

machine so that one real processor is assigned to one logical processor set.

Binding threads to processors keeps the operating system from deschedul-

ing and migrating such threads. Surviving to scheduling quantum and

migration are events supported by LogTM-SE virtualization but we are

interested in signature optimization, so we bound the threads to suppress

sources of variability from OS interference. Also, for our simulations, we

used 15 out of 16 cores in the simulated system. The remaining processor

is left to the OS so that it does not interrupt simulations. Finally, other

OS interferences were eliminated. We traversed the benchmark memory

footprint before starting computation to avoid page faults inside transac-
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tions. Dynamic library functions used inside transactions were also called

before entering transactions to let the linker fill in the Procedure Linkage

Table (PLT). This way, we disable OS’s dynamic linker interference inside

transactions since the PLT has all the information about dynamic linking

procedures.

2. Avoiding system library calls: Some system library calls like malloc or ran-

dom use global data structures that can lead to undesirable and unjustified

conflicts between threads when used within transactions. For example, in

each call to random a global variable that holds the last generated random

value is read and then written with the new generated random value. This

could lead to transaction serialization. On the other hand, malloc invokes

system calls operated by the OS in kernel mode that cannot be stalled

or aborted by user-level transactions. This might yield isolation consis-

tency errors as non-transactional kernel code from the system call may ac-

cess global data structures modified by other threads within transactions.

Therefore, to avoid system library calls within transactions it was used a

per-thread memory pool instead of malloc to allocate dynamic memory. For

random, a Mersenne twister pseudorandom generator [64] was used. The

implementation of the aforementioned libraries and others can be found in

the standard version of STAMP although some modifications were done.

3. Padding to get rid of false sharing : Shared data structures were padded to

avoid false sharing at cache line level.

4. Other changes: Some transactions in Vacation benchmark were split to

improve scalability for small signatures. In Labyrinth, the code that priva-

tizes the grid was enclosed in an open transaction to avoid inserting in the

signature those reads (see Section 3.2.1).





4
Locality-Aware Interval

Filters

Bloom filters has been used in HTM systems since Ceze et al. [14] first pro-

posed to used them in signatures. Elements inserted into the Bloom filter cor-

respond to memory address locations issued by a running program. However,

a Bloom filter may give rise to false positives that can seriously harm the per-

formance, specialy when transactions are long-running and large. Also, Bloom

filters do not take into account the fact that memory accesses usually exhibit the

locality of reference property.

In this chapter, we contribute with the design and analysis of a hardware

alternative to Bloom filters that has been called the Interval Filter (IF) [81].

Compared to a classical Bloom filter, the Interval Filter may show a lower false

positive rate for those inserted elements that exhibit spatial locality according to

a metric space.

Hereinafter HTM is adopted in order to evaluate the proposed filter. However,

results could extrapolate to other similar domains where Bloom filters are already

used, like a wide range of applications in the domain of networks [11] and file

searching [49]. Locality of reference will be exploited to store the locations read

and written in an alternative way to Bloom filters, aiming to reduce false conflicts

and enhance the execution of large transactions.

The rest of the chapter is organized as follows: Section 4.1 defines the filter

and explains how it operates. Section 4.2 describes the simulation environment

and evaluates the filter.

53
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4.1. The Interval Filter

The Interval Filter (IF) is proposed to reduce false positives in the presence

of locality according to some metric. Without loss of generality, in the rest of

the chapter memory addresses will be considered as the elements to be inserted

in the filter. Thus, intervals are defined as chunks of consecutive addresses that

can be extracted out of a memory reference trace. Figure 4.1 shows the design

of the filter. The IF comprises n intervals that are recorded as a pair of two

full addresses, one representing the lower bound of the interval and the other one

representing the upper bound. A valid bit per interval is also needed, V0, ..., Vn−1.

Each interval bound has two bit lines. Lower bounds are compared with the

incoming address incremented by one and upper bounds are compared with the

address decremented by one. Hence, =l
0, ...,=

l
n−1 return true if the incremented

address is equal to the corresponding lower bound of the interval. On the other

hand, >0, ..., >n−1 return true if the address is greater than the lower bound.

Likewise, =u
0 , ...,=u

n−1 and <0, ..., <n−1 are the bit lines for the upper bounds of

the intervals. The filter can be thought of as an extended full-associative cache.

Same primitive operations than Bloom filters can be performed with the in-

terval filter. Figure 4.1 shows, within dash-line boxes, how test for membership

and insertions can be implemented. Test for membership consists in checking

the Match line to be true. This output line is computed by checking that the

incoming address is within an interval. To do so, >0, ..., >n and <0, ..., <n bit

lines can be used in the way shown in Figure 4.1. Thus, lookups are relatively fast

but insertions are slower and more complicate, as in Cuckoo-Bloom filters [92].

Actually, three cases come up on inserting an address into the interval filter, given

that the address is not a member yet. Figure 4.2 depicts the insertion algorithm

flow chart:

Case 1 If every =l
0, ...,=

l
n−1 and =u

0 , ...,=u
n−1 bit lines are zero it means that

none of the valid intervals can be expanded, so the incoming address must

form a new interval in the filter. Thus, if the filter is not Full then the

address is inserted into a non-valid interval by storing the original address

(neither incremented nor decremented) in both bounds, lower and upper.

Conversely, if the filter is Full then a valid interval is widen introducing

false positives. In order to minimize the number of false positives due to

widening, the closest interval bound is chosen. To do so, the address is

XORed with the bounds whose > or < bit lines are set to 0. Then, the

lower one is chosen as the candidate to store the address in an iterative

manner.
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Figure 4.1: Interval filter design.

Case 2 If either only one lower bound or only one upper bound is equal to the

incremented/decremented address then an existing interval is to be widen.

This can be done in a straightforward way by only storing the original

address into the matched bound.

Case 3 If one lower bound and one upper bound are matched at the same time

it means that the incoming address is the only one missing to merge two

existing intervals. Therefore, one of the two matched intervals is invalidated

by clearing its V bit and the remaining interval is widen by setting its

lower/upper bound to the lower/upper bound of the invalidated interval.

In Figure 4.2 the invalidated interval is i and it has been matched in the
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Figure 4.3: Example of insertion into the IF. Case 1.

upper bound so the lower bound of the interval k is set to the lower bound

of i. If k is chosen to be invalidated then the upper bound of i is set to the

upper bound of k.

Let’s see some examples of insertions into the IF for the different cases de-

scribed above. Figure 4.3 shows two examples for Case 1, where the incremented

and decremented versions of the address to insert are not equal to any interval

bound in the filter. On the left we can see the situation in which the filter has

still some empty intervals, so that the Full signal is 0. In this case, the original

address is inserted into both the lower bound and the upper bound of the first

empty interval, whose valid bit is then set to 1. The figure on the right belongs

to Case 1 as well. However, now the filter is full, and an existing interval must

be widened. The bounds in green are those whose > lines, for the lower bounds,

or < lines, for the upper ones, are set to 0. Such bounds are iterated to find the

closest bound to the address to insert. This way, the search is shortened to half

the number of bounds. In this case, the closest bound is 0x00BE, so the address

is inserted in its place, thus yielding false positives for the addresses in between

0x00BE and 0x0C02.

Figure 4.4 depicts the last two cases. We can see, on the left, an insertion

of Case 2. The incremented address matches a lower bound of a valid interval

inserted in the filter, which means that the address to be inserted is contiguous
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Figure 4.4: Example of insertion. Case 2 on the left. Case 3 on the right.

to an address that has already been inserted. Then, the original address (not

incremented) replaces the lower bound, thus widening it without incurring false

positives. On the right hand example of Figure 4.4, we can see an insertion of

Case 3. The address to be inserted is the only one missing to merge intervals 1

and 2. The filter realizes because =l
1 and =u

2 signals are active. Then, interval 2

is invalidated by setting its valid bit to zero, and the lower bound of such interval

is stored into the lower bound of interval 1.

4.2. Experimental Evaluation

This section is devoted to the experimental evaluation of the IF comparing

its performance with that of a Bloom filter of similar hardware complexity.

The simulation environment used to evaluate the IF comprises the Simics

full system execution-driven simulator and the GEMS’s HTM Ruby module as

described in Section 3.1.3. Ruby was modified to include the IF.

All workloads used for evaluating our proposal are part of the Stanford’s

STAMP suite discussed in Section 3.2. We have chosen the applications that

lays emphasis on long-running transactions and large read and write sets. Such

benchmarks are of special interest for signature evaluation since they put the
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Table 4.1: Parameters and data set maximum and average sizes.

Bench Input # xact
max max avg avg

|RS | |WS | |RS | |WS |

Bayes -v32 -r4096 -n2 -p20 -s0 -i2 -e2 536 2171 1631 81.8 45.1

Kmeans
-m40 -n40 -t0.05

1380 134 65 99.7 48.5
-i random-n1024-d1024-c16

Labyrinth -i random-x48-y48-z3-n64 158 529 510 128.7 120.7

Yada -a20 -i dots.2 1338 578 405 60.5 37.5

most pressure on signatures.

Synopsys and CACTI 5.3 [100] were used to estimate the area of the Interval

Filter and the Bloom filter involved in the evaluation. A SRAM memory with

8-byte words and four separate read/write ports was modeled with CACTI to

estimate the Bloom filter area. CACTI was also used to model a full-associative

SRAM memory with 32-bit words and 2 banks for the IF. Additional control

logic and extra comparators and incrementers used by the IF were modeled with

Synopsis and were proven to have a small impact on the total area. Given an IF

with n = 10 (i.e. ten intervals), the hardware-equivalent Bloom filter has 4 hash

functions of the class H3 (H3 has proven better than others like Bit Selection [92])

and 2048 bits length. Both filters take about 0.09mm2 of die area each, using

65nm technology node. Hereinafter, results will be shown for an n = 10 interval

filter compared to a 2048 bits, 4 hash function Bloom filter.

Experiments were carried out with 4 benchmarks from the STAMP suite:

Bayes, Kmeans, Labyrinth and Yada. Such benchmarks exhibit the largest trans-

action data sets that cause Bloom filters to slowdown the execution because of

false conflicts. Table 4.1 summarizes input parameters and the maximum and

average RS/WS size in cache blocks for those benchmarks.

The motivation behind the Interval Filter comes from Figure 4.5. This figure

shows the interval histograms for the four benchmarks. It is a classification by

width of the intervals formed in the read sets and write sets of transactions, and

it does not necessarily mean that every transaction in the system has intervals of

every width, e.g. some transactions may have intervals of 2 and 10 instructions,

but they might not have intervals of size 3, which would belong to a different

transaction. All the benchmarks show some amount of single addresses, i.e.

width-1 intervals, but most of addresses can be classified into intervals wider than

1 by extracting spatial locality features. In fact, the number of single addresses

in the benchmarks is between 2% and 22% as shown in Table 4.2. To keep track

of address sets as intervals instead of doing so as single addresses could save in
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Figure 4.5: Number of intervals of different widths for Bayes, Kmeans, Labyrinth

and Yada, both RS and WS (log scale).

Table 4.2: Percentage of single addresses.

Bench
Number of single addresses

Read Set Write Set

Bayes 13.1% 2.7%

Kmeans 2.7% 2.5%

Labyrinth 4.2% 3.6%

Yada 22.0% 16.4%

space and performance.

Figure 4.7 shows the execution time of the Bloom filter versus the IF normal-

ized to the perfect filter (i.e. infinite length, no false positives). Two cases can

be observed:
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Bayes and Yada: The interval filter performs similar to or slightly worse

than Bloom filters concerning these benchmarks. Two things cause such

slowdown: (i) the high percentage of single addresses, see Bayes and Yada

in Table 4.2, and (ii) transactions are made up of small-mid size intervals, as

can be inferred from Figure 4.5, since the largest interval in Bayes is about

100 addresses in the figure, while the largest transaction is 2171 addresses

(see Table 4.1). Also, for Yada, the largest interval is 11 addresses, while

the largest transaction is 578 addresses. Therefore, having an interval filter

with n = 10 intervals and a great amount of intervals to be stored in it,

then “Case 1” (see Figure 4.1) will be the most frequent case of insertion,

hence introducing lots of false positives.

Another important fact to consider is the creation of the intervals. Fig-

ure 4.6 shows the interval creation in the write set of the largest transac-

tion in each benchmark, i.e. it shows the result of having an infinite size

interval filter in which addresses are inserted in order of appearance and

the number of valid intervals are checked out after each insertion and then

plotted. Notice that Bayes and Yada would need between 200 and 350 in-

tervals to keep track of the whole set without false positives, however the

interval filter size is 10 intervals. Flat parts in the Bayes curve corresponds

to “Case 2” insertions.

Labyrinth and Kmeans: The interval filter performs equally well or better

than Bloom filters for these benchmarks. Now the number of single ad-

dresses is lower than Bayes and Yada (Table 4.2) and large transactions

are made up of a few large-size intervals, since Figure 4.5 shows intervals

greater than 400 addresses for Labyrinth while Table 4.1 shows maximum

transactions about 500 and, 70 addresses intervals for Kmeans and max-

imum transactions of 70 and 130. Therefore, the interval filter does not

get full immediately introducing few false positives. Figure 4.6 shows a flat

creation of intervals for Kmeans while Labyrinth shows a rise and fall that

corresponds to interval merging, “Case 3” insertions (see Figure 4.1).

The behavior of these benchmarks is due to the data types they manage.

Labyrinth makes a copy of a global multidimensional mesh inside a transac-

tion which is represented as a multidimensional array. Kmeans keep a table

of objects and attributes within an array. Conversely, Bayes and Yada use

more complex and memory-scattered data structures as trees and lists.

The interval filter presents excellent results when the application has trans-

actions with a given memory footprint. A few large intervals with a local access

pattern get the best out of the IF, which may outperform the regular Bloom
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ized to the perfect filter.

filter. Stride one accesses imply Case 2 insertions, which do not create new in-

tervals and false positives either. Other strides may provoke Case 1 insertions

causing false positives, as long as the filter is full. However, if the locations in

between the stride are eventually accessed, such false positives might not harm

the execution as the filter behaves as a conflict predictor. Also, Case 3 insertions

enhance the performance of the IF as they reduce the population of intervals in

the filter and do not yield false positives.

However, the IF harvests similar or worse performance than regular Bloom

filters for data streams with poor locality features. Accessing many single ad-

dresses fills the filter early, so subsequent insertions falls into Case 1 category

thus introducing false positives. Such a lack of generality in the behavior of the

IF leads us to search other solutions like those described in next chapters. The

IF could be thought of as a complement to Bloom filters to keep them from store

large streams of consecutive addresses which could saturate the filter. It could be

also useful in embedded systems where the access pattern is known in advance.



5
Locality-Sensitive

Signatures

In this chapter we introduce Locality-Sensitive Signatures (LS-Sig) [79, 78, 80]

as a Bloom-based signature optimization to conventional signatures.

Previous signature designs consider that all memory addresses are uniformly

distributed across the address space. However, in real programs the address

stream is not random as it exhibits some amount of locality. The main contri-

bution of this chapter is a novel signature design based on Bloom filters, called

LS-Sig, which exploits memory reference locality to reduce the probability of

false conflicts. The proposal defines new maps for hash functions to reduce the

number of bits inserted in the filter (occupancy) for those addresses with spatial

locality. That is, nearby memory locations share some bits of the Bloom filter.

As a result, false conflicts are significantly reduced in transactions that exhibit

spatial locality in their read or write sets, but the false conflict rate remains un-

alterable for transactions that do not exhibit locality at all. This is favorable

particularly for large transactions that usually present a significant amount of

spatial locality. In addition, as the proposal is based on new locality-aware hash

maps, its implementation does not require extra hardware.

We implement the proposed LS-Sig in a hardware TM simulator to show

how savings in false conflicts translate into important performance improvements

while executing concurrent transactions. In particular, different variants (hash

maps) of LS-Sig were evaluated on codes from the STAMP [66] benchmark suite

using the experimental environment described in Section 3.1.3. Also, these sig-

natures were compared with other state-of-the-art implementations available in

literature. In most cases, the results show significant improvements in perfor-

mance, particularly for codes with large transactions.

The remainder of the chapter is organized as follows. In Section 5.1, the

63
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proposed LS-Sig design is introduced with a discussion of its basics, followed by

its comparison with the generic signature designs for probabilistic evaluation.

Section 5.2 deals with the implementation of different variants of LS-Sig on the

Winconsin GEMS simulator, and discusses how LS-Sig can improve the execution

performance in several cases.

5.1. Locality Sensitive Signatures

This section discusses how memory reference locality property can be used to

reduce the probability of false conflicts in the signatures implemented as Bloom

filters.

It is clarified that what will be considered in the ensuing discussion here is

a Bloom filter (see Section 2.3.1) that maps a space of 2n memory addresses,

N = {0, 1, ..., 2n − 1}, into an array of 2m bits (indexes), M = {0, 1, ..., 2m − 1},

m ≤ n, through a family of k hash functions, {h0, h1, ..., hk−1}. Hash func-

tions of class H3 will be used, because they exhibit high quality behavior for

memory address streams, as discussed in Section 2.3.2. Functions of class H3

basically define a linear transform between an n-bit word and an m-bit word:

hi :GF (2)1×n → GF (2)1×m, GF (2) being the Galois field of two elements [104],

under the bitwise XOR. Two basic operations are defined over the Bloom fil-

ter: (i) inserting an address x by asserting its mapped bits (hi(x) = 1), and (ii)

checking if an address has been already inserted by testing if all its corresponding

mapped bits are set to 1. Let BF (x0, x1, ..., xq−1) be the set of asserted bits in

the Bloom filter after inserting the sequence of q addresses x0, x1, x2, ..., xq−1.

This set is given by
⋃q−1

i=0 BF (xi), being BF (x) =
⋃k−1

j=0 hj(x).

It is to be noted that false positives arise from two situations. First, an address

y (not inserted) gives rise to a false positive if x was inserted in the Bloom filter

and BF (y) = BF (x), y 6= x. In such a case, one can say that x and y are aliases,

that is, when we apply the hash functions, hi, to these addresses, the resulting

indexes are the same. In a Bloom filter, the probability of two addresses being

aliases depends on particular hash functions and their number, k. For higher k,

this probability would be smaller. Second, a false positive may appear because of

current occupancy of the filter. This happens for a non-inserted address y, after

the insertion of q addresses, if BF (y) ⊂ BF (x0, x1, ..., xq−1) and y is not alias of

any xi. However, a false positive takes place. One expects that the higher the

filter occupancy, the higher would be the probability of false positives. In fact,

if the filter saturates (all bits set to 1) all subsequent queries for non-inserted

addresses become false positives.
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In general, small data set transactions, the common case [24], occupy a small

fraction of the Bloom filter and, hence, show false positives most of which are

due to aliases and only a few due to filter occupancy. However, large data set

transactions show many false positives, which are not only due to aliasing but also

to high filter occupancy. Reducing the number of hash functions, k, helps large

data set transactions, but not the small ones [92]. Harnessing spatial locality

could be a solution.

Memory reference locality is a property that may be used to favor small and

large transactions simultaneously. In this chapter we propose to build a Bloom

filter that maps locations far away from each other as normal Bloom filters do,

while the nearby locations are mapped sharing some bits. This way, one can

choose k to be high enough to favor small transactions, while large transactions

will benefit from a reduction of the occupancy of the filter thanks to locality.

Different locality- or distance-sensitive hashing schemes are available in the

literature. They are used to formulate queries of similarity in metric spaces using

compact representations of objects [16, 47, 51] (see Section 2.3.5). Motivated by

these definitions, a formal general signature scheme is introduced here that can

take into account the locality of reference to reduce the occupancy of the filter

when nearby addresses are inserted.

Definition 5.1.1 Let be a Bloom filter that maps a space of 2n memory ad-

dresses, N , into a space of 2m bits, M , m ≤ n, through a family of k hash

functions of the class H3, and let (N, d) and (℘(M), dh) be two metric spaces.

Such a Bloom filter is called (r, δ)-locality sensitive ((r, δ)-LS), with r ∈ N and

δ : N → N, if, for any x, y ∈ N , it satisfies that,

if 1 ≤ d(x, y) ≤ 2r − 1 then 0 ≤ dh(BF (x), BF (y)) ≤ δ(d(x, y)) < k.

�

In a Bloom filter designed according to Definition 5.1.1, nearby locations

assert not-disjoint bit sets into the bit array, i.e. they share some bits. The

function d returns the distance between two addresses and may be considered as

the value of the bitwise XOR, d(x, y) = x ⊕ y, although the Euclidean distance,

d(x, y) = |x − y|, can also be suitable. The usual metric of the distance between

two sets, dh, is the cardinality of the symmetric difference. Nevertheless, dh is

defined as dh(BF (x), BF (y)) = k − |BF (x) ∩ BF (y)|, which basically measures

the number of differing hash function outputs when addresses x and y are mapped.

As |BF (x)| = k, this metric is half of the cardinality of the symmetric difference

between two sets.
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Table 5.1: Example of locality-sensitive signature: addresses and their corre-

sponding H3 indexes for a Bloom filter with k=4, 2m=1024.
Address h0 h1 h2 h3

0xffff0 240 158 889 554
0xffff1 586 158 889 554
0xffff2 90 347 889 554
0xffff3 736 347 889 554
0xffff4 181 906 484 554
0xffff5 527 906 484 554
0xffff6 31 591 484 554
0xffff7 677 591 484 554
0xffff8 718 497 62 163
0xffff9 116 497 62 163
0xffffa 612 52 62 163
0xffffb 222 52 62 163
0xffffc 651 741 675 163
0xffffd 49 741 675 163
0xffffe 545 800 675 163
0xfffff 155 800 675 163

It can be seen in Definition 5.1.1 that parameter r acts as the radius of action

of the LS scheme. Addresses, whose distances are greater than 2r−1, are mapped

as though by a generic Bloom filter. The function δ(d(x, y)), which returns the

number of differing indexes between two addresses, dh(BF (x), BF (y)), can as

well be chosen to increase with d(x, y), in such a way that the nearer the addresses

are each other, the lesser disjoint are the sets of bits the addresses are mapped

into.

Table 5.1 shows an example of an LS scheme where the outputs of the k hash

functions were computed for a sequence of adjacent locations. Notice that for

addresses with d(x, y) = x⊕y = 1, their maps differ in only one value. Addresses

with distance 2 are different in no more than 2 hash values. On the other hand,

addresses with distances greater than 2k−1 − 1 = 7 may have no hash values in

common.

5.1.1. Implementation

This section introduces the implementation of a locality-sensitive signature

scheme by defining the hash functions of its filters with specific parameters. Such

an implementation is an instance of Definition 5.1.1, where k = 4, d(x, y) = x⊕y,
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dh(BF (x), BF (y)) = k − |BF (x) ∩ BF (y)|, r = k − 1 and:

δ(d(x, y)) =







1 if d(x, y) = 1

2 if 2 ≤ d(x, y) ≤ 3

3 if 4 ≤ d(x, y) ≤ 7

(5.1)

For operational reasons, function values outside the interval [1, 2r − 1] will be

mapped as: δ(0) = 0 and δ(d) = k, if d ≥ 2k−1.

A Bloom filter with k hash functions is characterized by k H3 matrices

{H0,H1, ...,Hk−1}, as seen in Section 2.3.2. Next, a set of H3 matrices are

proposed according to the parameters described above.

In order to obtain an LS scheme that is compatible with the δ function in Ex-

pression 5.1, each hash function is transformed by masking its corresponding Hl

matrix with the following square matrix, Ml ∈ GF (2)n×n, obtained by nullifying

the last l elements of the identity matrix:

Ml = diag(

n−l
︷ ︸︸ ︷

1, 1, · · · , 1 ,

l
︷ ︸︸ ︷

0, 0, · · · , 0 ) =

=













1 · · ·

1 · · ·

1 · · ·
︸ ︷︷ ︸

n−l ones l zeros
︷ ︸︸ ︷

· · · 0

· · · 0













.

(5.2)

The proposed locality-sensitive Bloom filter is thus characterized by k H3 ma-

trices, {LH0, LH1, ..., LHk−1}, where the last l rows of each matrix have been

nullified, that is:

LHl = Ml · Hl. (5.3)

Hereafter, the signature scheme that comprises filters with this type of hash

functions will be referred to as LS-Sig.

Hence, the computation of an index by a hash function with matrix LHl does

not depend on the l least significant bits of the address. The example in Table 5.1

has been generated following this scheme. This way, the three last rows of the

matrix associated with h3, the two last rows of the matrix associated with h2

and the last row of the matrix for the function h1 are null, whereas no rows of

the matrix associated with h0 are null.



68 Chapter 5. Locality-Sensitive Signatures

5.1.2. Features

Two important features of a hash function are uniformity and implementation

cost.

A hash function is expected to be uniform, that is, inputs should be equitably

mapped over the output range. This way, the number of inputs colliding on the

same element of the destination space should be the same, avoiding aliases to

concentrate on certain elements. In the case of a linear transformation, as the

one in Expression 2.7, the alias distribution is directly related to the null space

associated with the linear function. The null space is given by those vectors

x such that xH = 0, 0 being the null vector of the destination space. It is

commonly denoted as N(H). If two inputs x, y are considered aliases, then

xH = yH ⇒ (x − y)H = 0 and therefore, x−y ∈ N(H). All linear combinations

of vectors in the null space are aliases of 0, and an alias of a given input can be

generated by adding a vector of the null space to it.

The rank of a matrix and the dimension of its null space are related by

the rank-nullity theorem: dim(N(H)) + rank(H) = n. According to this, for a

given matrix H, it is desirable to have a null space as small as possible, because

the number of aliases increases with the size of the null space. The minimum

dimension of N(H) is achieved for the maximum rank of the n×m-matrix H,

which will be m (m ≤ n), if such a number of linearly independent rows in H is

guaranteed. In this case dim(N(H)) = n − m.

Focusing on the computation of locality hash matrices according to Expres-

sion 5.3, it can be seen that the dimension of the null space, and consequently the

uniformity of the hash function, will not be affected if the rows being nullified are

linearly dependent on the remaining ones. This condition is easily fulfilled if the

input space is larger than the destination space, as it has already been assumed

(m ≤ n), and the number of nullified rows does not exceed the aforementioned

maximum kernel dimension, that is, k ≤ n − m.

This situation was verified for all the matrices used in the experiments of this

thesis. For example, the effect of nullifying the last rows on one of these matrices

is shown in Figure 5.1, which depicts the hash matrix and its associated null

space. Dots represent the non-zero matrix coefficients. For the null spaces, a

vector basis is shown in the reduced row echelon form, which makes their visual

comparison easy. It is to be noted that when nullifying the l-th last rows of the

hash matrix, vectors with only the l-th bit asserted appear in the the null space

basis. Nevertheless, it is important that the null space dimension remains at its

maximum desirable value, n − m, for all LS matrices.
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Figure 5.1: Effect of nullification of rows in the null space of an LS scheme’s hash

matrices (N(H) · H is the null matrix).

What is happening here is that the pattern of aliases is changing as rows are

nullified, but the number of aliases remains unchanged. This fact can be observed

in Figure 5.2, which shows the aliases of zero for the matrices in Figure 5.1. As the

number of nullified rows increases, aliases concentrate in batches of consecutive

addresses (nullifying l rows involves batches of size 2l). This can be seen in the

alias density histogram of the figure. Therefore, the way the locality sensitive hash

matrices are generated does not alter the null space dimension, and consequently

the number of aliases will be the same as that of the original hash functions.

As regards implementation costs, no additional hardware is required, because

the proposed LS-Sig can be considered a special case of Bloom filters. Besides,

the XOR trees could be even simpler, because several hash functions do not

make use of certain bits of the address. LS-Sig can also be implemented directly

following a parallel Bloom organization [92]. In addition, this locality-sensitive

scheme can be easily combined with or extended to other implementations, like

the PBX hashing [111], as shown in Section 5.2.4.
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Figure 5.2: Pattern of aliases of zero for the LS matrices in Figure 5.1 (left), and

its density distribution (right).

5.1.3. False Positive Analysis

Next, a general expression of the false positive rate, similar to Expression 2.3

in Section 2.3.1, is obtained for the locality-sensitive signatures of Definition 5.1.1

with the δ function of Expression 5.1 and the rest of conditions in Section 5.1.1.

The probability of false positives is expected to depend on the spatial proxim-

ity between addresses. For instance, a new address y is considered for insertion

in the Bloom filter, x being the nearest address already inserted. Considering the

stochastic variable t, assume that ft is the probability that δ function is equal to

t, for any address to be inserted with its nearest address already in the filter,

ft = Pr(δ(d(y, min
x inserted

d(x, y))) = t), 1 ≤ t ≤ k. (5.4)

Here, min
x

f(x) denotes the value of x where a given function f(x) is minimum.

This definition excludes the repetitions of addresses during insertion; hence, f0

has not been taken into account and consequently t goes from 1 to k, as δ defi-

nition saturates beyond k.

This way, the probability of filter bits being zero for distant inserted addresses
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Figure 5.3: Probability of false positives of generic and LS signatures varying the

parameter f =
∑3

t=1 ft (the higher the f , the more the locality).

continues to follow the Expression 2.1. Nevertheless, neither of the two near ad-

dresses x, y (having distance less than 2k−1) will assert k bits. Instead, they

assert only k + δ(d(x, y)) bits in total. Making use of the probabilities of Expres-

sion 5.4, the probability of a bit remaining zero for the locality-sensitive scheme

can be written thus:

plocal

ZERO
(m, q, k) =

(

1 −
1

2m

)q
Pk

t=1
t·ft

. (5.5)

Hence, the probability of false positives for the locality-sensitive signature can

be expressed as follows:

plocal

FALSE POSITIVE
(m, q, k) =

(

1 −

(

1 −
1

2m

)q
Pk

t=1
t·ft

)k

. (5.6)

Figure 5.3 shows the analytical evaluation of false positive probability for the

original Bloom filter (Expression 2.3) with several k values, and the proposed

LS scheme (Expression 5.6) for k = 4. To parameterize the evaluation, f =
∑k−1

t=1 ft was introduced as the probability of an address being near to some

inserted address. Consequently, 1 − f = fk is the probability of being far from

those already in the filter. As the parameter f gathers probabilities for different

distances, a Zipf distribution was chosen, which is often assumed for modeling

locality of reference [27, 52]. In this way, Expression 5.6 was evaluated with
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Table 5.2: Probabilities defined by Expression 5.4 for STAMP codes (the higher

the f1 the more the spatial locality in transactions).
Benchmark fRS

1
fRS
2

fRS
3

fRS
4

fWS
1

fWS
2

fWS
3

fWS
4

Bayes 0.32 0.25 0.14 0.29 0.40 0.29 0.14 0.17
Genome 0.24 0.15 0.14 0.47 0.26 0.20 0.03 0.51
Intruder 0.24 0.15 0.07 0.54 0.17 0.14 0.09 0.60
Kmeans 0.48 0.25 0.12 0.15 0.49 0.25 0.12 0.14

Labyrinth 0.46 0.25 0.13 0.16 0.46 0.26 0.13 0.15
SSCA2 0.19 0.06 0.13 0.62 0.14 0.00 0.00 0.86

Vacation 0.13 0.10 0.08 0.69 0.29 0.12 0.19 0.40
Yada 0.25 0.24 0.16 0.35 0.29 0.27 0.17 0.27

f2 = 1
2f1, f3 = 1

3f1. It is to be noted that Expressions 5.5 and 5.6 are valid only

for the distance metric under consideration. Likewise, this metric introduces

some constraints to possible ft values. Considering a monotonically increasing

consecutive sequence of different addresses, it was thus fulfilled that f4 ≥ 1
8 , and

f1 ≤ 1
2 . The lower bound of f in the plot was derived from these constraints.

Whereas low values of k are advantageous for large transactions, and high

values of k for small ones, with a generic Bloom filter, it can be inferred from

Figure 5.3 that the LS scheme can achieve the benefits of both situations if the

address sequence exhibits medium/high spatial locality.

5.1.4. Locality in Benchmarks

Prior to including locality-sensitive signatures in a cycle accurate HTM sim-

ulator, a straightforward functional TM system was developed to estimate the

locality properties of the benchmarks used in evaluating the present proposal.

Intel’s PIN instrumentation tool [57] was used to rapidly implement the system,

which we have called TMtool, and it is described in Section 3.1.4.

The probabilities ft, 1 ≤ t ≤ k = 4, were measured for both the read and

the write sets of different benchmarks (see Table 5.2). As expected, exploitable

locality was present in all codes. In fact, for two of the codes, Kmeans and

Labyrinth, f1 almost reached its maximum 1
2 , for the metric under consideration.

Using our PIN TMtool simulator, the filter occupancy (i.e. the number of bits

set to 1 in the filter) of committed transactions was recorded for both generic

and LS signatures. The average occupancy saving percentage of LS-Sig over

generic signatures was calculated as saving = occupancy generic−occupancy locality
occupancy generic

and shown in Figure 5.4. The results were obtained by varying the filter size
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Figure 5.4: Average Bloom filter occupancy saving of locality-sensitive signature

with respect to generic signature, both for read set (top) and write set (bottom),

varying the filter size from 64b to 8Kb.

from 64Kbit to 8Kbit. On large filters, occupancy conflicts are rather unlikely;

therefore, rightmost bars show the maximum possible occupancy savings that

LS-Sig can achieve for the tested benchmarks. It is to be noted that codes with

the highest locality in Table 5.2 get the highest savings. On the other hand,

SSCA2 benchmark hardly saves bits in the signatures because its transactions

are very small. In fact, its WS is of 1 or 2 addresses on average (see Table 5.4)

and the saving is 0% as shown in Figure 5.4. Finally, occupancy saving helps

on diminishing the probability of stalling or aborting transactions due to false

positives. Hence, these significant occupancy savings of LS-Sig are expected to

improve the execution time.

5.2. Experimental Evaluation

This section deals with the simulation methodology (Section 5.2.1), and the

experimental results obtained from the simulator (Sections 5.2.2 to 5.2.5). Sec-

tion 5.2.2 explores different LS-Sig schemes, Section 5.2.3 discusses about false
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Table 5.3: Input parameters for the benchmarks
Benchmark Input

Bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2

Genome -g512 -s64 -n8192

Intruder -a10 -l128 -n128 -s1

Kmeans -m40 -n40 -t0.05 -i rand-n1024-d1024-c16

Labyrinth -i rand-x32-y32-z3-n64

SSCA2 -s13 -i1.0 -u1.0 -l3 -p3

Vacation -n4 -q60 -u90 -r16384 -t4096

Yada -a20 -i 633.2

sharing and LS-Sig, Section 5.2.4 describes the effect of applying PBX hashing

on LS-Sig, and finally, Section 5.2.5 discusses about saving hardware with our

proposal.

5.2.1. Methodology

We followed the methodology outlined in Chapter 3 to evaluate our LS-Sig

designs. Ruby was modified to include the locality-sensitive signature designs.

For implementing the hash functions, same H3 matrices of Ruby were used after

effecting the modifications described in Section 5.1.1.

Simulation experiments use perfect signatures (no false positives, hardware

unimplementable) as the goal to reach. Parallel signatures, both generic and

locality-sensitive ones, ranging in length from 64 bits to 8K bits1, were used

to gain a comprehensive insight into locality-sensitive signatures behavior. All

signatures used 4 hash functions.

The proposed signature schemes were experimentally evaluated using all the

codes of the STAMP suite (see Section 3.2). Table 5.3 summarizes the input

parameters for the benchmarks, and Table 5.4 shows the main transactional

characteristics of the workloads. Column “#xact” is the number of committed

transactions, and column “Time in xact” shows the percentage of transactional

cycles. The metric for locality in benchmarks, column “Xact locality”, was drawn

from Table 5.2. The last four columns stand for average and maximum values of

RS and WS size distributions, measured in cache blocks.

164 bits matches the word length in SPARC architecture whereas 8K bits matches the
performance of perfect signatures for the simulated benchmarks
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Table 5.4: Workload transactional characteristics. (Data set sizes in the right-

most four columns are reported in cache blocks)

Bench #xact
Time Xact avg avg max max

in xact locality |RS | |WS | |RS | |WS |

Bayes 523 94% High 76.9 40.9 2067 1613

Genome 30304 86% Mid 12.1 4.2 400 156

Intruder 12123 96% Mid 19.1 2.5 267 20

Kmeans 1380 6% High 99.7 48.5 134 65

Labyrinth 158 100% High 76.5 62.9 278 257

SSCA2 47295 19% Low 2.9 1.9 3 2

Vacation 24722 97% Mid 19.7 3.6 90 30

Yada 5384 100% High 62.7 38.4 776 510

5.2.2. Exploring Radius and Delta

Certain works [79, 92] consider that parallel signatures should be used, instead

of regular ones, because they can perform equally well or even better, besides

being more area-efficient. Another suggestion they offer is using four or more

high-quality hash functions, preferably from the H3 family. Actually, Sanchez [91]

proves that, in most cases, the performance given by four hash functions is better

than that given by one or two functions. Besides, using eight hash functions gives

no significant improvement and it requires additional hardware. Consequently,

all experiments were carried out using parallel Bloom filters with 4 H3 hash

functions.

Complying with Definition 5.1.1, six (r, δ)-LS signatures are explored next

by combining two different delta functions, δ0 and δ1, with three different radii,

1, 3 and 5. Also, another delta function, δP , is proposed, which behaves better

independently of benchmarks. Its radii are 3 and 5. So, the following are the

explored LS schemes:

1. (r, δ0)-LS: Addresses within intervals of radius r (i.e [0, 2r − 1], [2r, 2r+1 −

1], ...) are mapped to the same bits in the filter. That is, 0 indexes are

different between the maps of the addresses within the same interval:

δ0(d(x, y)) = 0 if 1 ≤ d(x, y) ≤ 2r − 1.

2. (r, δ1)-LS: Addresses within intervals of radius r are mapped to the same

bits except one. That is, when mapping the addresses of an interval, only

1 index differs between maps:

δ1(d(x, y)) = 1 if 1 ≤ d(x, y) ≤ 2r − 1.



76 Chapter 5. Locality-Sensitive Signatures

64 128 256 512 1K 2K 4K 8K
1

2

3

4

5

6

7
Bayes

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS−Sig

(3,δ
0
)−LS−Sig

(5,δ
0
)−LS−Sig

64 128 256 512 1K 2K 4K 8K
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Intruder

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS−Sig

(3,δ
0
)−LS−Sig

(5,δ
0
)−LS−Sig

256 512 1K 2K 4K 8K
0

5

10

15

20
Labyrinth

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS−Sig

(3,δ
0
)−LS−Sig

(5,δ
0
)−LS−Sig

64 128 256 512 1K 2K 4K 8K
0

5

10

15

20
Vacation

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS−Sig

(3,δ
0
)−LS−Sig

(5,δ
0
)−LS−Sig

64 128 256 512 1K 2K 4K 8K
0.95

1

1.05

1.1

1.15

1.2

1.25
Kmeans

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS−Sig

(3,δ
0
)−LS−Sig

(5,δ
0
)−LS−Sig

64 128 256 512 1K 2K 4K 8K
0.5

1

1.5

2

2.5

3

3.5

4
Genome

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS−Sig

(3,δ
0
)−LS−Sig

(5,δ
0
)−LS−Sig

64 128 256 512 1K 2K 4K 8K
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Ssca2

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS−Sig

(3,δ
0
)−LS−Sig

(5,δ
0
)−LS−Sig

64 128 256 512 1K 2K 4K 8K
0

2

4

6

8

10
Yada

Signature size (bits)

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 P
e

rf
e

c
t)

 

 

Generic

(1,δ
0
)−LS

(3,δ
0
)−LS

(5,δ
0
)−LS

Figure 5.5: Execution time normalized to perfect signature comparing parallel

generic signatures and (r, δ)-LS-Sig with r ∈ {1, 3, 5} and δ0.
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3. (r, δP )-LS: Addresses within intervals of radius r are mapped depending on

the distance between them. Thus, delta function is defined piecewise as

follows:

δP (d(x, y)) =







1 if d(x, y) = 1

2 if 2 ≤ d(x, y) ≤ 2⌈
r
2
⌉ − 1

3 if 2⌈
r
2
⌉ ≤ d(x, y) ≤ 2r − 1

For example, for r = 5, δP is as follows:

δP (d(x, y)) =







1 if d(x, y) = 1

2 if 2 ≤ d(x, y) ≤ 7

3 if 8 ≤ d(x, y) ≤ 31

Figure 5.5 shows the execution time normalized to perfect filters for all the

benchmarks using locality-sensitive signatures with δ0 and three different radii.

Time for parallel generic signatures (Generic) is also shown for comparison.

(r, δ0)-LS-Sig operates as a generic filter which maps the addresses at granu-

larity higher than that of cache blocks. Thus, δ0 could suffer from additional

false sharing (see Section 5.2.3) when the radius is high.

For radius equal to 1, the memory block is 1 bit larger from the viewpoint

of signatures. Then, (1, δ0)-LS-Sig introduces little additional false sharing and

consequently almost all benchmarks behave similar to parallel generic signatures

when the filters are large, except for Labyrinth and Bayes, which performs worse,

because of false sharing, with about 1.7× slowdown for 2Kb, 4Kb and 8Kb in

Labyrinth and 1.7× slowdown for 8Kb in Bayes. With shorter filters, (1, δ0)-LS-

Sig performs equally well or slightly better due to occupancy saving. For radius

equal to 3, the signature block is larger by 3 bits; so, there is more additional false

sharing, as shown by larger filters. It can be seen from Figure 5.5 that Labyrinth

slows down by 2× for 4Kb and 8Kb signatures, Bayes by 2× for 8Kb signature,

and Genome by 1.25× for 8Kb signature. Conversely, occupancy savings lead to

better results when the signature size decreases: Bayes shows a speedup of 1.25×

over the generic scheme from 128b to 2Kb signatures, Genome 1.7× for 1Kb, and

Intruder and Vacation 1.5× on average for small signatures, while Labyrinth and

Yada speed up by 7× and 5× respectively. When the radius is equal to 5, 25

addresses are mapped to the same four bits in the signature. Consequently, false

sharing results in 2× slowdown for large signatures in Bayes, Genome, Labyrinth

and Intruder. However, the sparse filling of the filter leads to significant results

in almost every benchmark for small signatures. In most cases, Labyrinth, Yada,

Bayes, Intruder and Vacation are twice as fast as parallel generic signatures, as

shown in Figure 5.5, whereas Yada and Labyrinth are six-times as fast in some

cases.
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Figure 5.6: Execution time normalized to perfect signature comparing parallel

generic signatures and (r, δ)-LS-Sig with r ∈ {1, 3, 5} and δ1.
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Figure 5.6 shows the execution time normalized to perfect filters for all the

benchmarks using (r, δ1)-LS-Sig with r ∈ {1, 3, 5}. δ1 combines three hash func-

tions operating at granularity coarser than that of cache and one hash function

working at cache block granularity. This way, the hash function working at cache

granularity can distinguish between addresses mapped to the same bits because of

coarser granularity of the other three hash functions, as long as it does not incur

a false positive. As Figure 5.6 shows, benchmark performance for large signa-

ture sizes is now either slightly worse than parallel signatures or the same. With

r = 5, Genome slows down its execution by 1.1× for 4Kb and 8Kb signatures,

Intruder by 1.2× for 1Kb and Labyrinth 1.36× for 4Kb. For small signatures,

execution is slower than that of δ0, because of the addition of false positives from

the hash function that operates at cache granularity in addition to the false shar-

ing from the three hash functions operating at coarser granularity. Even so, δ1

outperforms generic signatures in most cases.

Additionally, we have defined one more LS scheme that performs more evenly,

whatever be the benchmark: (r, δP )-LS. Such a scheme merges several granular-

ities to trade off between additional false sharing and false positives. Figure 5.7

shows the execution time normalized to perfect signatures for parallel generic sig-

natures, (r, δP )-LS-Sig with r ∈ {3, 5} and (5, δ1)-LS-Sig. It is to be noted that

(r, δP )-LS-Sig performs similar to or better than generic filters on large signature

sizes, since they can get rid of the additional false sharing effect that comes up in

δ1 and δ0 for Bayes, Genome, Intruder or Labyrinth. As far as small signatures

are concerned, (3, δP )-LS-Sig gets closer to generic filters because it is built up

with smaller radius than that of (5, δP )-LS-Sig, which, conversely, gets closer to

(5, δ1)-LS-Sig.

From the results of (r, δP )-LS-Sig, shown in Figure 5.7, benchmarks can be

classified into three groups, considering their behavior:

1. SSCA2: This benchmark exhibits the smallest transactions of the whole

suite. RS and WS maximum sizes are only 3 and 2 cache blocks respectively.

Moreover, the benchmark spends most of the time outside transactions (see

Table 5.4). Hence, SSCA2 is not signature-dependent.

2. Kmeans, Vacation, Intruder and Labyrinth: These benchmarks show sim-

ilar behavior when signature size decreases. In some cases, (3, δP )-LS-Sig

and (5, δP )-LS-Sig reduce the execution time considerably. They always

either outperform or match the performance of generic signatures.

Kmeans is low contended and spends only 6% of time in transactions; so,

this is also not signature-dependent (Figure 5.7 shows a speedup of 1.14x
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for the best case). Even so, (r, δP )-LS-Sig reduces execution time of generic

ones when 128b filters are used, because transactions are of medium size

and exhibit high locality (see Table 5.2).

In Vacation, (r, δP )-LS-Sig matches the execution time of generic signatures,

because of mid-locality and medium-to-small scale transactions. They are

better for 64 and 128b signatures, because the maximum data set size (max

RS size is 90) is close to the signature size, and generic signatures have

higher occupancy. Vacation is high contended and does not scale well for

small signatures. Intruder behaves the same way as does Vacation, but

scales better.

Finally, Labyrinth shows a great improvement in performance. High local-

ity, large transactions on average (both RS and WS) and high contention,

help (r, δP )-LS-Sig in outperforming generic signatures remarkably.

3. Bayes, Genome, Yada: In these benchmarks, LS-Sig yields better results

than generic signatures for large signature sizes, but slightly worse results

for small ones. This behavior is related to the manner in which LogTM-SE

resolves conflicts. LogTM-SE stalls transactions that request for a conflict-

ing address, retries its coherence operation, and aborts on a possible dead-

lock cycle. Hence, with (r, δP )-LS-Sig, transactions can run for a longer

time before encountering a conflict, even on small signatures, but on abort,

they must undo the log that is longer than it would be if the conflict had

been detected earlier. In some cases, a false conflict can behave as a conflict

prediction and it can accelerate progress [19]. Figure 5.8 shows the average

RS and WS percentages of false positives for Genome and Yada. The per-

centage of false positives was obtained by dividing the total number of false

positives by the total number of both false and true positives. Figure 5.7

shows that the number of false positives is higher for signatures from 64b

to 256b, but Figure 5.8 shows that the number of true positives also is

higher as the percentage becomes low. This confirms that transactions run

longer by virtue of (r, δP )-LS-Sig. It is to be noted that decreasing false

positive rate in signatures does not necessarily lead to direct improvement

in performance, as other factors, like abort patterns, also matter.

In real systems, signatures are likely to increase in size, as in the case of

caches and memories. This way, despite the aforementioned execution time

loss when signatures are 256b or smaller, (3, δP )-LS-Sig and (5, δP )-LS-Sig

are good alternatives to parallel generic signatures.

Finally, the linear correlation between execution time and abort time was

calculated for the experimental setups of Figures 5.5, 5.6 and 5.7. The total time
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Figure 5.7: Execution time normalized to perfect signature comparing parallel

generic signatures and (r, δ)-LS-Sig with r ∈ {3, 5} for δP and r = 5 for δ1.
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Figure 5.8: Average of RS and WS percentage of false positives for generic and

(3,δP )-LS signatures.

of aborts depends on the number of aborts, as also of the time required to solve

them, which is mainly a function of the length of the log to be undone. The

observed correlation coefficient varies from 0.88 to 0.99, which reflects the strong

correlation between the execution time and the abort time.

Implication: For large signatures, (r, δP )-LS-Sig performs equally well or bet-

ter than parallel generic signatures, while for small signatures, in most cases, it

outperforms parallel ones. Also, δP behaves more evenly than δ0 and δ1 for all

the benchmarks tested. Therefore parallel (r, δP )-LS-Sig is a good alternative to

parallel generic signatures.

5.2.3. Interthread vs. Intrathread Locality: The Effect of

Additional False Sharing

In the preceding section, the term additional false sharing has been introduced

to denote the false sharing added by locality-sensitive signatures because of hash

coarse granularity. This section discusses how additional false sharing can affect

the performance of benchmarks and its relationship to locality.

To break down the number of false positives into those caused by Bloom

aliasing/occupancy and those caused by additional false sharing, the following

procedure was followed depending on the delta function (super block will be used

to refer to locality-sensitive hashing blocks):

δ0, every hash function at the same granularity, larger than cache blocks:

An additional false sharing false positive is detected if the address involved
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was not really inserted in the filter, but another address of the same signa-

ture super block was inserted earlier. The filter thus matches the address

because of additional false sharing.

δ1, one hash function at cache block granularity and the others at the same

larger granularity : A false positive due to additional false sharing is detected

if there is a false positive due to aliasing/occupancy in the subfilter which

operates at cache block granularity, and the address was not really inserted,

but another one in its super block was.

δP , one hash function at cache granularity and the others at larger and

different granularities: A false positive due to additional false sharing is

detected if there is a false positive due to aliasing/occupancy in the filter

which operates at cache block granularity, and all the other filters operating

at different and coarser granularity result in a false sharing false positive.

False sharing due to cache blocks was not taken into account, because benchmarks

were tuned to avoid it via padding (see Section 3.2.2).

Figure 5.9 shows the number of total false positives (FP), i.e. the number

of false positives in the read set of all transactions plus the number of false

positives in the write set of all transactions, for parallel generic signatures, and

the number of false positives for (5, δ0)-LS-Sig, (5, δ1)-LS-Sig and (5, δP )-LS-Sig.

False positives concerning LS-Sig are broken down into false positives due to

signature aliasing/occupancy (FP) and those due to signature false sharing (FS).

The figure shows five benchmarks that are sensitive to signature false sharing:

Bayes, Genome, Intruder, Labyrinth and Yada.

It needs to be noted that δ0, the top row, is the locality-sensitive hash function

that shows more false positives due to additional false sharing. In this case, when

the filter size is large, the number of false positives due to occupancy is close

to zero and almost every false positive is due to false sharing (light yellow in

Figure 5.9). This situation leads to the definition of two types of locality in a

parallel benchmark and therefore, to the classification of benchmarks depending

on the type of locality they exhibit:

Interthread locality : A parallel code shows interthread locality, if their

threads reference shared memory locations near in time and there is spatial

proximity between such locations.

Figure 5.5 shows that Bayes and Labyrinth slow down their execution for

(r ∈ {1, 3, 5}, δ0)-LS 8Kb signatures, implying thereby that such bench-

marks exhibit high interthread locality. Genome and Intruder get worse
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results with radius 5, but with radius 1 or 3 they do not slow down their

execution significantly. Thus, shared data is located farther away from each

other than that of Bayes and Labyrinth; so, it can be said that Genome

and Intruder exhibit medium interthread locality. The other benchmarks,

which do not show significant slowdown for (5, δ0)-LS-Sig, can be regarded

as of low interthread locality. Overall, interthread locality is likely to be a

feature of codes whose shared data comprise arrays of primitive data types

and light-weight structures, like the Labyrinth’s three dimensional integer

array which represents the maze where the benchmark finds the shortest-

distance paths between pairs of points, or the net of structs which holds the

marks of the Bayesian network in Bayes. However, the shared data access

patterns will ultimately determine the degree of interthread locality in a

parallel application.

Intrathread locality : A parallel code shows intrathread locality if their

threads reference their private memory locations near in time and there

is spatial proximity between locations.

Therefore, codes not showing much interthread locality could benefit from

(r, δ0)-LS-Sig with high radius, because lots of adjacent locations will be mapped

to the same bits in the filter, keeping occupancy low. However, codes with high

interthread locality may need lower radius and other delta locality functions as

discussed below.

The middle row of Figure 5.9 shows the total number of additional false shar-

ing false positives for (5, δ1)-LS-Sig, which has a filter that operates at cache

granularity. It avoids false positives due to false sharing in other filters as long as

a false positive due to occupancy is not detected in that filter. If it is detected,

the other filters may get a false positive due to false sharing. The probability of

getting false positives increases with the occupancy of the filter; so, the probabil-

ity of getting false positives due to false sharing will be higher when the subfilter

operating at cache granularity gets full. However, thanks to locality-sensitive

signatures, three more subfilters, operating at higher granularity, have not been

spoiled by occupancy. Furthermore, by the time the subfilter operating at cache

granularity has been spoiled by occupancy, there will be lots of addresses in the

signature that may probably form blocks of contiguous, locality-wise addresses,

so that the other filters that have been storing super block addresses do not get

lots of false positives due to false sharing, because almost every address in a su-

per block will probably have been inserted. This is better achieved by functions

of class δP , because they map addresses at different granularities, both fine and

coarse. Such a scheme minimizes the number of false conflicts due to false sharing
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as shown by the bottom row graphs in Figure 5.9.

Implication: Benchmarks showing low interthread locality benefit from LS-Sig

with large radii, and vice-versa. As regards intrathread locality, the larger the

radius the better it would be, regardless of the amount of locality, because only

private data is involved. In case of general purpose systems, where workloads

may vary widely and the degree of interthread locality is not known in advance,

(r, δP )-LS-Sig is the best choice as it involves a trade-off between large radii,

small radii, δ0 and δ1 LS-Sig.

5.2.4. Locality-Sensitive PBX Hashing

In this section, Page-Block-XOR (PBX) hashing [111] is used to reduce hard-

ware costs of Locality-sensitive Signatures. PBX hashing was devised by Yen et

al. to keep the randomness of H3 functions while saving in area, power and la-

tency of the signature implementation. H3 hashing requires a tree of XOR gates

per bit of the hashing function output index, conversely, PBX requires only one

XOR gate per bit resulting in a single XOR gate row per hash function.

The insight behind PBX is that the input bits have enough randomness to

minimize the XOR trees involved in the index computation. Such randomness

is calculated using the entropy of the addresses. Assuming 32-bit virtual and

physical addresses, cache-blocks of 64 bytes and page size of 4kB, the highest

entropy (i.e. higher randomness) was found from the 26th to the 6th bit of the

addresses, for the STAMP benchmarks. Yen et al. also found that bit-field over-

lap leads to higher false positive due to correlation between bit-fields. Therefore,

the physical page number bits, from bit 26th to bit 17th, were combined with

the cache-index bits2, from bit 16th to bit 6th. Figure 5.11 shows the PBX bi-

nary matrices used in this chapter. Such matrices define a surjection, that is, for

every value into the codomain of indexes there exists at least one value in the

domain of addresses. To assure that, the rank in GF (2) (the Galois field of two

elements) of the matrices was calculated and proved to have full rank. To get

the LS-Sig PBX matrices, they were shifted downwards inserting blank rows on

the top, thus maintaining the bit-field disjunction and ensuring maximum use of

bits. However, as signature gets smaller, the leftmost columns were subtracted

from the matrices, keeping the bits in those columns from being used to compute

the final index. This way, LS-Sig PBX could yield slightly different results for

some benchmarks (e.g. Yada, Labyrinth) when signatures are small as shown in

Figure 5.10.

2 The size of the bit-fields are not tied to the configuration of the CMP [111]
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Figure 5.10: Execution time normalized to perfect signature (no false positives)

comparing Generic and (r ∈ {3, 5}, δP )-LS-Sig to their PBX versions.
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Figure 5.11: LS-Sig PBX matrices. A 1 in the topmost row and the leftmost

column means that the 6th bit of the address is used to compute the 11th bit of

the index. A 1 in the bottommost row and the rightmost column means that the

26th bit of the address is used to compute the LSB of the index.

If we use Bloom filters implemented as regular filters, it needs to be ensured

that the union of matrices by pairs is of full rank. This way, all hash functions

will yield different indexes for a given address. In this chapter, the parallel

implementation is used so that there is no need to check the rank of the union of

the matrices. Hash functions may yield the same index for a given address because

different subarrays are asserted. Even so, the matrices shown in Figure 5.11 have

full rank by pairs.

5.2.5. Saving Hardware

LS-Sig can be considered to enable smaller signature sizes, as opposed to

improving only the false positive rate. Figure 5.7 shows that Yada and Labyrinth

yield the same results if a parallel LS-Sig is used with half the size of generic

ones. Intruder and Genome behave similarly, but when the signature is halved,

they behave slightly worse. Vacation and Bayes could be in the same group as

Yada and Labyrinth, but only when the signature size is not halved from 256 bit

downward.
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As regards the hash functions, according to the XOR count proposed by Yen

et al. [111], (5, δP )-LS-Sig reduces the number of XOR gates by about 6.5% with

respect to the generic version. On the other hand, PBX can achieve a reduction

of up to 80%. However, the design of PBX signatures is subject to prior analysis

of the entropy of the workloads. It is to be noted that the area required by hash

functions may represent about one-fifth the size of the SRAM for k = 4 [92].





6
Dealing With Asymmetry

In Data Sets

In this chapter we present our MultiSet and Reconfigurable Asymmetric

signatures [77, 82, 83] to cope with asymmetry in transactional data sets.

Read and write signatures are usually implemented as two separate, same-

sized Bloom filters. In contrast, transactions frequently exhibit read and write

sets of uneven cardinality. In addition, both sets are not disjoint, as data can be

read and also written. This mismatch between data sets and hardware storage

introduces inefficiencies in the use of signatures that have some impact on per-

formance, as, for example, read signatures may populate earlier than write ones,

increasing the expected false positive rate.

We present different signature designs as alternative to the common scheme

to deal with asymmetry in transactional data sets in an effective way. Basically,

two classes of new signatures are analyzed: multiset and reconfigurable asym-

metric signatures. The first class uses a single Bloom filter to track both read

and write sets. Different alternatives are studied to take advantage of some im-

portant properties of data access patterns, like either the significant amount of

transactional memory locations that are both read and written, or the locality

of reference. The second class uses Bloom filters of reconfigurable size for reads

and writes (a static approach was first discussed in [67] where the sensitivity to

signature length is analyzed). The main focus of this chapter is a thorough study

of these alternative signature designs, including a false positive probability anal-

ysis and a complete experimental evaluation comparing the different approaches

in terms of performance, and hardware area, time and energy requirements.

The rest of the chapter is organized as follows. Next section introduces the

proposed signature schemes, multiset and reconfigurable asymmetric, discussing

their concept and implementation, and showing a comparison with the common

91
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Figure 6.1: Regular signature implementation schemes.

designs based on separate filters. Section 6.2 shows a statistical analysis of the

proposed signatures, determining false positive rates in different contexts. Sec-

tion 6.3 presents experimental results for the multiset and reconfigurable asym-

metric signatures on the GEMS simulator using the STAMP workloads, and

compares the performance attained by the different design alternatives. Besides,

an analysis of area, time and energy requirements using CACTI is also shown.

6.1. Multiset and Reconfigurable Asymmetric Sig-

natures

This section presents the multiset and reconfigurable assymetric signature

proposals and their implementation, both regular and parallel, as alternatives to

separate schemes.

6.1.1. Regular Multiset Signatures

Figure 6.1a shows the implementation of a regular separate signature (SEP).

It comprises two Bloom filters, one for keeping track of the addresses read by

a transaction and the other one for the addresses written. Such filters can be
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implemented as SRAMs of 2m bits. When k > 1, multi-ported SRAMs are

needed to perform the operations in one cycle. Pi, i ∈ [0, k − 1] represents the

ports. However, multi-ported memories require more hardware than single-ported

ones and signatures must keep both concise and fast. The signature provides four

operations: inserting an address into the read set filter (Insert RS), inserting an

address into the write set (Insert WS), checking for membership of an address into

both read and write sets (Check RS+WS — transactional writes must be checked

this way) and checking for membership of an address into the write set (Check

WS — for transactional reads). In case of insertion, the Address is mapped into

k indexes by hash functions, either hr
i , i ∈ [0, k − 1], for the read set or hw

i for

the write set. Then, the Insert RS/WS signal enables writing in the SRAM (WE:

write enable). In this case WE enables all the ports in the SRAM. The SRAM

input ports are set to 1, so the bits indexed by the hash functions are all set to

1. In case of checking for write set membership, the k 1-bit output data ports

are ANDed together and Check WS selects the 0 input of the multiplexer which

is then connected to Match. For read set and write set checking, both the AND

output of the write set and the AND output of the read set are ORed, while

Check RS+WS selects the 1 input of the multiplexer which connects it to the

Match output.

Regular multiset signatures (MS) join both the read set and the write set

filters together in the same filter of twice the size: 2m+1 bits. Figure 6.1b depicts

how this proposal can be implemented. The read set hash functions and the write

set hash functions index the whole SRAM address range. Therefore, 2k ports are

needed and the Insert RS signal drives the first k WE inputs and the Insert WS

signal drives the rest. The duplication of the number of ports of the SRAM

leads regular multiset signatures to a quadratic growth of the required area. In

order to save in area and also to maintain time-efficiency, parallel signatures are

used [14, 92] which do not need multi-ported SRAMs.

6.1.2. Parallel Multiset Signatures

A parallel Bloom filter comprises k arrays of 2m/k bits. Each hash function

indexes its own array, so one bit is set into each array on insertion.

Figure 6.2a shows the implementation of parallel separate signatures. Like

regular filters, parallel filters can be implemented as SRAMs. However, they use

manifold smaller single-ported SRAMs instead of a larger multi-ported one, thus

saving in hardware area. Furthermore, parallel Bloom filters have been proved

to yield similar or better performance than regular ones [79, 92].
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Figure 6.2: Parallel signature implementation schemes.

On the other hand, Figure 6.2b depicts the implementation of the multiset

counterpart for the parallel signature. In this case, the SRAM is also partitioned

into k smaller arrays but of 2m+1/k bits. Now, each SRAM is indexed by two

hash functions, one for the read set, hr
i , and the other one for the write set, hw

i .

Therefore, parallel multiset signatures take over twice more area than parallel

SEP signatures, since parallel MS signatures need 2-ported SRAMs whereas par-

allel SEP signatures use single-ported SRAMs. To reduce the complexity of the

multiset scheme, next we propose to keep certain SRAMs single-ported.

6.1.3. Parallel Multiset Shared Signatures

Several memory locations are read and written inside transactions. Some of

them are only read and others are only written but many of them are both read

and written. Section 6.3.4 shows that about 30% of locations are both read and

written for the workloads tested. In such a case, storing the same address twice

is redundant but the filter must be able to discriminate whether the address was

only read or also written.

Figure 6.3a shows the proposed solution. The signature is a parallel multiset

signature where s SRAMs are single-ported, so they are indexed by only one hash

function, h0, h1, ..., hs−1, with s ∈ [0, k], i.e. hash functions are said to be shared

between RS and WS. This way, when inserting an address into the filter, some
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Figure 6.3: Multiset shared and reconfigurable asymmetric signature implemen-

tation schemes.

arrays do not take into account whether the address was either read or written,

they simply record one bit representing the address. That is why Insert RS and

Insert WS are ORed to drive the WE signal of the single-ported SRAMs. However,

the rest of the arrays must continue to discriminate between reads and writes so

they are addressed by a read hash function, hr, and a write hash function, hw.

Consequently, in case of an insertion to the write set, hw would set a bit in its

SRAM. Then, if the same address is subsequently inserted to the read set, a

different bit would be set to 1 by hr in the same SRAM.

On checking the signature, the bits from the single-ported SRAMs, which are

the same for the read set and for the write set, are ANDed together and then

they are also ANDed to the bits coming out of the double-ported SRAMs, which

are different depending on the port: P0 bits correspond to the read set and P1

bits correspond to the write set.

Finally, to find out the value of s, a trade off between hardware requirements

and signature performance has to be carried out. On the one hand, if s is set to

k, the signature implements k single ported SRAMs. Hence, parallel MS shared

signatures require hardware similar to parallel separate signatures but parallel MS

signatures will not differentiate between read and written addresses, which could
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degrade the performance. On the other hand, if s is set to 0, multiset signatures

implement k double-ported SRAMs, thus increasing the hardware requirements

but maximizing the probabilities of discriminating between read and written

addresses. Section 6.3.4 explores every possible scenario.

6.1.4. Reconfigurable Asymmetric Signatures

We propose a reconfigurable asymmetric signature (ASYM) that can be con-

figured at execution time to have a read set larger, the same length or smaller

than the write set.

Figure 6.3b depicts the implementation of this signature design. Taking a

parallel separate scheme like that of Figure 6.2a as a starting point, the ASYM

signature can configure the number of (hash, SRAM)-pairs devoted to each data

set instead of being k each. Thus, 2k SRAMs of 2m/k bits are needed (depicted by

the thick-lined rectangle), each one indexed by its hash function: hr
0, h

r
1, ..., h

r
a−1

for the read set and hw
a , hw

a+1, ..., h
w
2k−1 for the write set with a ∈ [1, 2k − 1]. The

parameter a is provided by the Mask Register in terms of a mask whose value can

be deducted from the expression 22k − 22k−a, which stands for a number of ones

padded with 2k − a zeros on the right. For example, on the need for a read set

larger than the write set, a can be either 5, 6 or 7 which means that the read

set comprises 5, 6 or 7 SRAMs and the write set comprises 3, 2 or 1 SRAMs,

respectively. Consequently, the masks would be the next bit words: 11111000,

11111100 and 11111110.

On inserting an address into the asymmetric signature, the SRAMs’ WE is

selected depending on the Mask Register. For Insert RS, this signal is ANDed

together with the mask, because the mask represents the number of SRAMs in

the read set. For Insert WS, this signal is ANDed with the inverse of the mask

which represents the SRAMs belonging to the write set. Finally, the result of

both AND gates is ORed to drive the WE signals of the SRAMs.

On checking for WS membership, the output of the 2k SRAMs is bitwise

ORed with the mask so that the RS SRAM output bits are ORed with a 1 and

they result in a 1 whatever their value. However, the WS SRAM output bits are

ORed with the 0 bits of the mask so they stay the same. Then, the 2k outputs of

the OR gate are ANDed together giving as a result the AND of the WS SRAM

output bits as the RS SRAM output bits have been all set to 1. To work out the

RS match output, the same procedure is followed but the inverse of the mask is

used.

The Mask Register could be loaded with a mask by means of either an in-
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struction in the instruction set architecture or the contention manager of the TM

system. In any case, the problem lies in finding the appropriate mask to config-

ure the signature to yield the best performance. This is not a trivial problem,

because we might need feedback from the compiler, runtime, TM system or from

the behavior of the signature itself. Finding the appropriate mask also depends

on whether a static (per-execution) or dynamic (per-transaction) signature con-

figuration is preferred throughout the execution of the application. We do not

deal with this problem in this thesis. However, Section 6.3.3 explores several

per-execution configurations of the ASYM signature to give more insight in its

behavior compared to MS signatures. A heuristic to choose the best per-execution

configuration is also proposed.

6.1.5. Hash Functions

Hash functions are implemented as H3 XOR hash functions [12] which com-

prise a set of XOR gate trees per function. XOR gate trees do not require signif-

icant area and, moreover, they can be replaced by a single line of XOR gates by

using PBX hashing [111].

However, the area of the hashing logic depends on the number of hash func-

tions k and the number of bits required to address the SRAMs, which depends

on whether the signature is implemented as regular, parallel, separate or mul-

tiset. Also, half of the address bits are used per bit of the hash function on

average [111], so the number of 2 fan-in XOR gates needed by an XOR tree that

computes one hash bit is b = ⌈address length
2 ⌉ − 1. Then, the expressions which

determine the number of XOR gates for the different signatures schemes are the

following:

Regular separate signatures: as Figure 6.1a shows, regular separate signa-

tures comprises 2k hash functions, k for the read set and k for the write

set. However, as read set is separated from the write set they can use the

same hash functions. Finally, the number of bits they need to index their

arrays is m, then:

#XOR = b · m · k (6.1)

Regular multiset signatures: the multiset signature joins the RS and WS

SRAMs together so their hash functions need one more output bit to index

the SRAM, m + 1, while the hash functions must be different each other:

#XOR = b · (m + 1) · 2k (6.2)
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Parallel separate signatures: depicted in Figure 6.2a, this scheme divides

the two SRAMs into k smaller SRAMs of 2m

k bits. The number of hash

functions still is k but the index bits are m − log2k in this case:

#XOR = b · (m − log2k) · k (6.3)

Parallel multiset signatures: the parallel multiset signature is like its sep-

arate counterpart but requires 1 more bit per hash function and different

hash functions for read set and write set:

#XOR = b · (m + 1 − log2k) · 2k (6.4)

Parallel multiset shared signatures: shown in Figure 6.3a, their hash func-

tions yield indexes of the same length as those of multiset signatures. How-

ever, the number of hash functions changes in this case, because the s

single-ported SRAMs are only indexed by one hash function each, so the

total number of hash functions is 2k − s:

#XOR = b · (m + 1 − log2k) · (2k − s) (6.5)

Asymmetric signatures: these signatures are similar to parallel separate

signatures but, in this case, the number of different functions is 2k − 1,

because a can range from 1 to 2k − 1.

#XOR = b · (m − log2k) · (2k − 1) (6.6)

Next, an example for real parameters is shown. For an address of 26 bits

(32 bits - 6 bits of line address), m = 10 and k = 4, 480 XOR gates are needed

for regular separate signatures. The multiset counterpart results in 1056 gates.

Parallel separate signatures need 384 XOR gates whereas the parallel multiset one

needs 864. The asymmetric signature needs 672. Note that multiset schemes need

one more bit per hash index and twice the number of hash functions of separate

signatures, because the arrays are double sized and share the filter. However,

the multiset shared scheme lowers the XOR gate requirements by lowering the

number of hash functions. For example, the multiset shared signature with s=1

needs 756 XOR gates. With s=2 only 648 gates, and with s=3 it just needs 540

XOR gates, quite close to those needed by parallel separate signatures.

The expressions above provide an upper bound for the number of XOR gates

required by the hash functions. They use half of the address bits per hash bit

so the hash functions share many bit pairs of the address and hence, they can

also share XOR gates. In fact, in Section 6.3.6, we found that the real number

of XOR gates is lower than that given by Expressions 6.1 to 6.6.
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6.2. False Positive Analysis

In Section 2.3.1, we formulate the false positive expression of a Bloom filter.

It can be computed as a function of its occupancy, that is, the number of bits

asserted, and the number of bits to be checked in a query. For an M -bit filter,

if bits are asserted equiprobably by a hash function, the probability of a given

bit being a 1 is 1
M . Thus, 1 − 1

M is the probability of a bit being 0. If occ

is the occupancy of the filter, that is, occ bits have been already asserted, the

probability of a bit still being 0 is (1− 1
M )occ, and hence, if nchecks bits are going

to be checked, the probability of getting a positive, i.e. all checked bits equal to

1, is:

pP(M,occ, nchecks) =

(

1 −

(

1 −
1

M

)occ)nchecks

. (6.7)

A common assumption is that the probability of false positive is approxi-

mately equal to that of getting a positive. The reason for that is Bayes’ theorem:

Pr(Positive
⋂

False Positive) = Pr(False Positive | Positive)Pr(Positive). Pro-

vided that the number of elements inserted into the filter is a small fraction of

the total possible elements whose query is positive, the conditional probability is

Pr(False Positive | Positives) ≈ 1. In this way:

Pr(False Positive) =

= Pr(False Positive | Positive)Pr(Positive) ≈

≈ Pr(Positive)

(6.8)

A more usual form of Expression 6.7 for a single filter of M bits, after inserting

a sequence of q elements using k hash functions, is:

pFP(M, q, k) = pP(M, qk, k) =

(

1 −

(

1 −
1

M

)qk
)k

. (6.9)

The last expression assumes that elements map into different bits during insertion.

So, the occupancy is the number of inserted elements, q, by the number of hash

functions, k, and each query checks k bits.

The goal in this section is to evaluate the probability of false positives for

an asymmetric/multiset configuration, as the one shown in Figure 6.4, where

the Bloom filter array is split into three sections: one exclusively for RS (read

section), other exclusively for WS (write section) and the last one for RS ∪ WS

(multiset section). Let M be the total number of bits of the array. Then, M can
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Figure 6.4: Asymmetric/multiset filter under analysis.

be broken down into mr bits for the read section, mw bits for the write section

and m∪ bits for the multiset one (M = mr +mw +m∪). Also, the number of hash

functions used in each section is defined as: kr, kw and k∪, respectively. The hash

functions used for the multiset section, k∪, are in turn defined as k∪ = k∪s +k∪p,

where k∪s functions are shared between RS and WS providing information about

insertion only, not whether the address was read or written, and k∪p, though, are

private functions which can differentiate reads from writes.

Consider a sequence of q = Card(RS ∪ WS) addresses to be inserted into

the filter, where qr = Card(RS), qw = Card(WS), q∩ = Card(RS ∩ WS) and

consequently q = qr + qw − q∩. The false positive rate for the multiset section is

given by the following expression, as an address which has been both read and

written will assert k∪s bits (k∪s hash functions are shared), and 2k∪p bits (k∪p

hash functions are private for read and write sets):

p∪
FP

(m∪, qr, qw, q∪, k∪s, k∪p) =

pP(m∪, k∪s(qr + qw − q∩) + k∪p(qr + qw), k∪s + k∪p).
(6.10)

According to Expression 6.8 the probability of getting a false positive on

checking a read involves getting a positive both in the read section and the

multiset section of the filter in Figure 6.4. The argument is analogous for writes.

Thus, the mathematical expectation of getting a false positive can be obtained

considering the probabilities of checking a read (pcr) and a write (pcw). This

way:

EFP(mr,mw,m∪, qr, qw, q∩, kr, kw, k∪s, k∪p, pcr, pcw) =

p∪
FP

(m∪, qr, qw, q∩, k∪s, k∪p)×

(pcrpFP(mr, qr, kr) + pcwpFP(mw, qw, kw)).

(6.11)

Note that pcr and pcw are conditioned by the TM system. In our TM simu-

lation environment, about 94% of checks involved both checking read and write
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Figure 6.5: Side view and contour plot of the surface formed by the expected

value of the false positive probability according to Expression 6.11. Part 1 of 3.

signatures, whereas the rest were write checks only (see Section 6.3.4). This is due

to invalidations, replacements and L2 cache misses which are frequent events in

contended codes with large transactions, exacerbated by LogTM’s cacheable logs.

Such events needs both read and write filters to be checked to ensure isolation in

the virtualized TM system [110]. Therefore, we can assume that pcr = pcw = 1
2 .

Several situations of interest have been evaluated in Figures 6.5, 6.6 and 6.7.

Plots represent Expression 6.11 considering two variables for the filter in Fig-

ure 6.4: the asymmetry between the read and write sections (labeled as asym-

metric factor in plots), and the fraction of the total filter taken up by the multiset

section (labeled as multiset fraction). Both variables range from 0 to 1. The

lower part corresponds to a contour plot of the expected false positive proba-

bility, whereas a side view of the surface is depicted in the upper part, showing

more clearly its minimum values. The cardinality of RS and WS is sketched in

a Venn’s diagram. It is to be noted that kr and kw values shown in each plot

corresponds to the case of a symmetric separate configuration (mr = mw and

m∪ = 0). As well, k∪s and k∪p values shown in each plot corresponds to a full
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Figure 6.6: Side view and contour plot of the surface formed by the expected

value of the false positive probability according to Expression 6.11. Part 2 of 3.

multiset configuration (M = m∪). For the rest of the evaluated points, k param-

eters were interpolated proportionally to their associated filter sections (mr, mw

and m∪) and rounded to their ceiling values.

Figure 6.5a, 6.5b and 6.5c corresponds to a symmetrical insertion pattern,

where the cardinality of RS and WS are identical. When the occupancy is low

(Figure 6.5a) the symmetrical separate configuration and the full multiset get

similar false positive rates. Nevertheless, the situation changes when the filter is

more populated (Figure 6.5b). In this case, asymmetric separate configurations

exhibit better false positive rates. A heuristic occupancy threshold of q/M ≈ 2/3

were found, which separates these two scenarios. Figure 6.5c shows the effect

of having non null RS ∩ WS, which increases the number of insertions, because

there are memory locations that are inserted as both read and written. Thus,

higher occupancy is expected for non multiset filters, and consequently, more

false positives.

Figure 6.6a illustrates an asymmetric insertion pattern where Card(RS) >

Card(WS). In this case, several configurations lead to the minimum false positive
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Figure 6.7: Side view and contour plot of the surface formed by the expected

value of the false positive probability according to Expression 6.11. Part 3 of 3.

probability. Both full multiset and a separate asymmetric solution can be chosen.

Scenarios of Figures 6.6b and 6.6c, where almost WS ⊂ RS, give advantage to

the full multiset configuration versus having RS and WS completely separated.

Nevertheless, as k∪p grows with respect to k∪s, the advantage gets smaller, be-

cause addresses that are both read and written assert more bits in the multiset

part, as can be observed in Figure 6.6c.

Finally, Figures 6.7a and 6.7b show two completely asymmetric situations

breaking the preceding assumption that pcr = 1
2 . In Figure 6.7a, both the inser-

tion and checking patterns are biased to reads (Card(RS) > Card(WS) and RS

is the most frequently checked). Here, a separate asymmetric configuration gets

a slightly lower false positive probability than the full multiset. In Figure 6.7b,

Card(RS) > Card(WS) as well, but WS is the most frequently checked set. This

last situation may happen if the probability of checking the write set is much

larger than that of checking the read set. Here, the full multiset configuration

has no advantages over the separate.
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Figure 6.8: Explored solutions.

Next section evaluates several implementations of the analyzed signatures.

Figure 6.8 shows the explored solutions in terms of three dimensions: read asym-

metry (mR to mW ratio), hash sharing (k∪s fraction of m∪; mSH in Figure 6.8)

and multiset (k∪p fraction of m∪; mMS in Figure 6.8). Our proposed signatures

are marked with circles: four ASYM and five MS schemes. The SEP scheme,

symmetric and separate, is equivalent to ASYM a=4. Unified (UNI) blind and

helper signatures from Choi et al. [21] are also shown, marked with squares. Note

the equivalence between MS s=4 and UNI blind schemes. The UNI helper sig-

nature remains in the shared plane but slightly shifts on the asymmetric axis due

to its helper write register.

6.3. Experimental Evaluation

In this section, methodology (Section 6.3.1), experimental results (Sections 6.3.2,

6.3.3, 6.3.4 and 6.3.5) and hardware requirements (Section 6.3.6) are described.

6.3.1. Methodology

The methodology outlined in Chapter 3 was used to evaluate the signatures

schemes described in Section 6.1. The Ruby module that implements the TM

system was modified to include all proposed signature schemes described in Sec-
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Table 6.1: Workload transactional characteristics. (Data set sizes in the right-

most columns are reported in cache blocks)

Bench #xact
Time avg avg max max avg|RS|

avg|WS|in xact |RS | |WS | |RS | |WS |

Bayes 523 94% 76.9 40.9 2067 1613 1.88

Genome 30304 86% 12.1 4.2 400 156 2.88

Intruder 12123 96% 19.1 2.5 267 20 7.64

Kmeans 1380 6% 99.7 48.5 134 65 2.06

Labyrinth 158 100% 76.5 62.9 278 257 1.22

SSCA2 47295 19% 2.9 1.9 3 2 1.53

Vacation 24722 97% 19.7 3.6 90 30 5.47

Yada 5384 100% 62.7 38.4 776 510 1.63

tion 6.1.

Perfect signatures were used as a reference, because they do not yield false

positives. Filter size ranged from 64 bits, which matched the word length in

SPARC architecture, to 8K bits length, which matched the performance of perfect

signatures for the simulated benchmarks. All filters used 4 hash functions of the

H3 family and the same H3 matrices of Ruby.

The proposed signature schemes were experimentally evaluated using all the

codes of the STAMP suite introduced in Section 3.2. The benchmarks were run

with the input parameters shown in Table 5.3. Table 6.1 shows main transac-

tional characteristics of the benchmarks. “#xact” is the number of committed

transactions. Column “Time in xact” lists the percentage of execution cycles of

the benchmarks spent inside transactions. The last columns show the average

and the maximum values of RS and WS size distributions in cache blocks as well

as the ratio.

6.3.2. Regular and Parallel Multiset Signatures Results

Figure 6.9 shows the results obtained for regular and parallel separate and

multiset signatures. The y axis represents the time in cycles which was normalized

to that of perfect signatures. Solid lines depict regular signatures and dashed lines

depicts parallel ones. The x axis represents the size of the filter. For example,

a 64bit value means that separate signatures use two 64bit filters, one for the

RS and one for the WS, while multiset signatures use only one 128bit filter.

According to their behavior, benchmarks can be classified into three different

groups:
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Figure 6.9: Execution time normalized to perfect signatures comparing regular

and parallel separate signatures (SEP) to regular and parallel multiset ones (MS).
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1. SSCA2: This benchmark is not signature dependent, because of its small

transactions, the smallest of the whole suite as Table 6.1 shows. In addition,

it spends most of the time outside transactions.

2. Bayes, Genome, Intruder, Vacation and Yada: These five workloads behave

better when using multiset signatures instead of separate ones.

Bayes and Yada reap a slight improvement of their execution time for cer-

tain signature sizes, about 1.2× for Bayes with parallel small signatures

and 1.2× for Yada with regular large ones. These benchmarks show large

transactions that introduce cross false positives. Cross false positives ap-

pear in multiset signatures as filter fills. For example, a transaction that

inserts only reads in its signature could yield a cross false positive, because

of filter occupancy, if a test for a write hits the signature. Figure 6.10

shows the average false positive percentage for regular SEP and MS signa-

tures. High cross false positive percentages can be appreciated for Bayes,

Genome, Intruder, Vacation and Yada but the overall false positive per-

centage is lower than that for SEP signatures. Notice that MS signatures

equalizes the number of read set and write set false positives.

On the other hand, Genome, Intruder and Vacation perform better using

multiset signatures. Genome is 1.4× faster with 1Kbit and 2Kbit filters.

Intruder also exhibits about 1.4× speedup from 256bit filter downwards,

and up to 2.5× of speedup is achieved for Vacation. These three benchmarks

show relatively small transactions on average (see Table 6.1) and get not

too much affected by cross false positives.

3. Kmeans and Labyrinth: Multiset signatures do not properly work with

these workloads. Regular MS signatures perform like regular SEP ones for

Kmeans but parallel MS signatures perform worse for some filter sizes. For

Labyrinth, MS signatures perform much worse than SEP filters specially

for parallel ones. Labyrinth’s transactions are large on average and fill the

filter beyond the 2/3 threshold (see Section 6.2) introducing many cross

false positives. Figure 6.10 shows that, in this case, cross false positives

translates into a higher overall false positive percentage than that for SEP

signatures. Next sections propose certain configuration enhancements that

will ameliorate filter occupancy.

Parallel signatures perform similar than regular ones in most cases, as shown

in Figure 6.9, and require much less area (see Section 6.3.6). Therefore, subse-

quent optimizations are explored using the parallel scheme.
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Figure 6.10: Average false positive percentage for regular SEP and MS signatures

broken down into RS, WS and cross false positives (RS-X, WS-X).

6.3.3. Reconfigurable Asymmetric Signatures Results

In this section a comparison between parallel separate, parallel multiset and

parallel reconfigurable asymmetric signatures is conducted.

Reconfigurable asymmetric signatures, as seen in Section 6.1.4, can be con-

figured to have different read set and write set sizes. The reconfiguration could

be performed dynamically at run time. However, in this case some static per-

execution configurations are tested as dynamic reconfiguration would need feed-

back from different parts of the TM system, runtime or compiler, which has not

been addressed in this thesis. Therefore, three asymmetric configurations are

shown in Figure 6.11: a=5 which means that the read set comprises 5 SRAMs

and the write set 3 SRAMs, a=6 which devotes 6 SRAMs to the RS and 2 to

the WS, and a=7 with 7 RS SRAMs and just 1 WS SRAM. Configurations with

larger WS than RS are not taken into account, because benchmark transactional

characteristics in Table 6.1 showed that the average RS size of transactions is

always larger than or similar to the average WS size for the tested codes.

As shown in Figure 6.11, the best asymmetric configuration for each bench-

mark behaves worse than or similar to the multiset signatures, except for the

benchmarks which already behaved badly with multiset signatures, i.e. Kmeans

and Labyrinth.

It is to be noted that the best asymmetric configuration could be chosen by

studying the average ratio of the data sets of the benchmarks. Last column of

Table 6.1 shows the ratio between the average RS size and the average WS size

of transactions. Bayes has a data set ratio of 1.88 and it behaves better with

a=5, as a=5 involves a 1.66 filter ratio which is closer to 1.88 than a=6 with

a ratio of 3 and a=7 with a ratio of 7. Genome exhibits a ratio of 2.88 wich
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Figure 6.11: Execution time normalized to perfect signatures comparing parallel

separate, multiset and asymmetric signatures varying parameter a.
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Figure 6.12: Percentage of addresses exclusively read, written and both read and

written inside transactions.

almost matches the ratio of 3 for a=6 with which it performs better than other

asymmetric configurations. Kmeans is 2.06 which is closest to a=5 and it yields

the best results. For Labyrinth, the parallel separate version (SEP) shows the

best results as it actually is a reconfigurable asymmetric signature with a = 4

and a ratio of 1. As seen in Table 6.1, Labyrinth has a 1.22 RS to WS ratio, so

it is closest to a = 4 than to a=5. Yada shows a ratio of 1.63. This would have

lead to choose a=5 as configuration value and results shows that it is the best

choice in this case. However, Intruder and Vacation fail to perform the best with

the configuration parameter suggested by their RS to WS ratio. Intruder shows

a 7.64 ratio closest to a=7 but in this case the best asymmetric configuration is

a=6. And, Vacation’s ratio is 5.47 but the best configuration is a=6 as well.

Therefore, the RS to WS ratio is a heuristic to choose the configuration for

ASYM signatures but more feedback from other parameters is needed to assure

best results. As ASYM signatures are not a general solution if we lack effective

mechanisms to dynamically reconfigure them on a per-transaction basis, they

were taken aside to gain more insight in MS signatures in next sections.

6.3.4. Parallel Multiset Shared Signatures Results

Parallel multiset shared signatures were described in Section 6.1.3. The moti-

vation behind such a signature comes from Figure 6.12, which shows the percent-

age of addresses that are either exclusively read, exclusively written or both read

and written inside transactions for each benchmark. For example, Bayes and

Kmeans exhibit close to 100% of written addresses that were also read. Overall,

about 30% of total memory locations accessed by each benchmark are both read

and written. As the percentage of addresses both read and written inside trans-

actions is significant, next step is figuring out the number of filters that could
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Figure 6.13: Execution time normalized to perfect signatures comparing parallel

separate and multiset signatures varying parameter s.
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be implemented as single-ported SRAMs in multiset signatures without losing

performance. For that purpose, we conducted experiments where parameter s

ranged from 0, which is equivalent to having a parallel multiset signature, to 4

functions, which means that every insertion into the read set is also an insertion

into the write set and vice versa.

Figure 6.13 shows the execution time for parallel multiset shared signatures.

As read and write sets hash functions are shared the results get better for all the

benchmarks. In fact, MS s=4 reaps the best results for every workload except

for Bayes and Genome, whose execution time slowed down about 1.25× with

respect to parallel filters for 8Kbit signatures. Therefore, parallel multiset s=3

signatures are conservatively chosen instead of s=4 for the sake of generality,

since they perform equal or better than parallel separate filters for all signature

sizes, while s=4 signatures perform better than s=3 for small signatures but

worse for large signatures.

Next, we study why execution is not harmed to a large extent when using mul-

tiset shared signature schemes, despite of the detection of read-read dependencies

as conflicts due to signature sharing.

In order to obtain the percentage of false positives due to the use of multiset

shared signatures with s=4, we devise a multiset shared perfect signature imple-

mented as one set data structure storing addresses regardless of they are read or

written. Such perfect structure does not yield false positives due to aliasing but

can yield false positives due to set sharing. A perfect separate filter was used

for comparison to get the number of false positives due to signature sharing. So,

having one set to store both read and written addresses issued by a transaction,

set sharing false positives show up in two situations: (i) when a read address, A,

is inserted in the signature and a Check WS for A, issued by a read of A from

another transaction, is to be performed on such a signature. In this case, false

positives become false read-read conflicts; and (ii) when a written address, B, is

inserted in the signature and a Check RS+WS for B is to be carried out. In this

case, false positives arise in the RS filter but they do not become false conflicts

since B was actually written, so true conflicts are detected.

Figure 6.14 shows the percentage of WS signature checks (both from Check

WSs and Check RS+WSs) broken down into negative checks and positive matches

(both true and false). We can see that the percentage of false positives is substan-

tial. However, the percentage of total Check WSs, which are the checks whose false

positives become false read-read conflicts, is very low as depicted in Figure 6.15.

Such figure shows the total number of RS+WS filter checks and WS filter checks

for each benchmark. It also shows the average percentage which is about 6% for
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Check WSs. So, from the large amount of false positives in Figure 6.14, only the

6% on average provokes read-read false conflicts. Thus, multiset shared signature

schemes do not get too much affected by read-read dependencies.

6.3.5. Enhancing Multiset Signatures with Locality-Sensitive

Hashing

In this section, locality-sensitive hashing proposed in Chapter 5 was used to

enhance s=3 parallel multiset signatures discussed in the preceding section.

Locality-sensitive hashing takes advantage of locality of reference, which is

usually exhibited by applications to a greater or lesser extent, to store a set of

addresses more concisely. In a Bloom filter with locality-sensitive hash functions,
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Figure 6.16: Execution time normalized to perfect signatures comparing parallel

separate, locality separate and locality multiset s=3 signatures (L1 and L2).
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nearby locations assert non-disjoint bits into the bit array saving occupancy.

Locality hash functions operate as follows. An address maps into k different

indexes, but only one hash index is different between two contiguous addresses.

Addresses with distance two have two different indexes. Addresses with distance

greater than 2k−1 − 1 may have no hashing outputs in common. That is, one

hash operates as a generic H3 hash, but the others take advantage of locality

with different granularity.

Figure 6.16 shows the results of enhancing parallel multiset s=3 signatures

with locality-sensitive hashing. Two different combinations are shown:

L1: MS s=3 signatures share h0, h1 and h2 hash functions while hr
3 and

hw
3 functions remain separate (see Figure 6.3a) and assert different bits in

the same filter, some bits for the read set and some others for the write set.

In the first locality scheme (L1), hr
3 and hw

3 take advantage of locality with

maximum granularity, h2 and h1 dwindle the granularity and h0 behave as a

generic H3 function. This way, separate functions discriminating locations

of read set, hr
3, from locations of write set, hw

3 , assert less bits in its filter,

thus reducing the false positive rate but failing to discriminate locations

read from nearby located writes.

L2: In this case, h0 is the function which takes advantage of locality with

maximum granularity, while hr
3 and hw

3 behave as generic H3 functions, i.e.

the filter which do not share the hash functions stays the same as in s=3

configuration, thus discriminating between locations read and written, and

the other filters get the locality improvement.

As Figure 6.16 shows, results for L1 scheme are practically the same as those

for L2 for every benchmark except for Labyrinth, Genome and Yada. Labyrinth

behaves better with L2 for small signatures, but Genome and Yada get slightly

worse results. MS shared locality signatures outperform parallel and locality sep-

arate ones in most cases. Figure 6.17 shows the average speedup per benchmark

of MS signatures over parallel separate signatures. It is to be noted that average

speedup ranges from 15% of MS s = 3 to 47% of MS s = 3 L2. Since such values

can change if we choose different signature sizes to calculate the average speedup

(i.e. we could take signature sizes greater than 8Kb, with speedups of 1, which

would cause a drop in the average, or, we could obviate 64bit and 128bit signa-

ture sizes as they might be too small for certain workloads), Figure 6.18 shows

the average speedup of all benchmarks by signature size. We can see that the

MS s = 0 configuration speeds the execution up around 20% for 64 and 128bit

signature sizes, but the subsequent sizes are affected by the bad results obtained
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Figure 6.18: Average speedup, per signature size, of parallel MS s∈ [0, 4], MS

s=3 L1 and MS s=3 L2 signatures over parallel separate signatures.

by Labyrinth, that makes the average speedup fall down close to the separate sig-

nature. As parameter s increases, the effect of Labyrinth vanishes until getting

up to 99% average speedup for MS s = 3 L2 and 256bit signature size and about

75% speedup for 2Kbit signature size. Notice the effect of read-read dependencies

of MS s = 4 for 8Kbit signature size. The average speedup falls to 0.95.
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6.3.6. Hardware Implementation

This section deals with area, time and energy requirements for the proposed

signatures.

Table 6.3 shows the results gathered for different filter sizes. “Filter size” row

stands for the size of one set filter, i.e. 4Kbit means two filters of 4Kbit (for

RS and WS) for separate signatures and one filter of 8Kbit for multiset ones.

CACTI 6.5 [72, 109] is used to model the SRAMs using the 65nm process. Due

to limitations of CACTI, SRAMs under 1Kbit are not considered. All SRAMs

have separate read/write ports, which are dual-ended, meaning that two lines

are required per bitline. Output/input bus width is set to one and CACTI’s

optimization function searches for the best partition of the cell array depending

on time, power and area efficiency.

Concerning SRAMs, regular SEP signatures have two 4-ported SRAMs, one

for the RS and one for the WS (see Section 6.1). Regular MS signatures have one

8-ported SRAM and they are three times as large as separate ones due to port

increase. Parallel SEP and Asymmetric signatures comprise eight single-ported

SRAMs, so they are more concise than regular ones, specifically, 6.5 times on

average. Parallel MS signatures have four double-ported SRAMs and they are

more than twice as large as parallel SEP signatures, because of the double-ported

SRAMs. Parallel MS s=3 signatures have three single-ported SRAMs and only

one double-ported SRAM lowering the area up to 1.2 times the area of parallel

SEP signatures. Finally, an alternative hardware implementation to parallel MS

s=3 is introduced. We have called it parallel s=3, since the multiset part is

dropped, and it comprises three single-ported SRAMs for the shared part and two

single-ported SRAMs of half the size instead of one double-ported SRAM, which

was the former MS part and now is a separate part. This scheme reaps execution

time similar to parallel MS s=3 (Figure 6.19 shows the behaviour of parallel s=3

compared to parallel MS s=3 without LS-hashing) but less hardware is needed

in its implementation, because all SRAMs are single-ported. In fact, parallel

s=3 is 10% less hardware-consuming than parallel SEP, because large single-

ported SRAMs from the shared part provide better area efficiency results as they

multiplex the bitlines to share sense amplifiers.

SRAM time results show that multiset schemes are about 12% slower than

the parallel SEP design, because of double-ported SRAMs. However, the parallel

s=3 signature is about 5% slower, because of the large single-ported SRAMs.

Energy values show that an increment in area for multiset signatures translates

into an increment in energy consumption, but such an area increment comes

from bitlines and wordlines whose energy consumption is less significant than
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Figure 6.19: Execution time normalized to perfect signatures comparing parallel

multiset s=3 and parallel s=3 signatures.

other components in the SRAMs. Thus, parallel MS s=3 signatures are 6%

more energy-consuming than parallel SEP ones, while parallel s=3 scheme saves

up to 19% of energy with respect to parallel SEP.

As regards hash functions, combinational logic modules were implemented

in Synopsys Design Compiler using the H3 matrices of the simulation. These

matrices show 13 bits per column on average (half of 26 address bits) and they

have many bit pairs in common. Synopsys Design Compiler optimized the XOR

gate trees finding these bit pairs to use as few gates as possible. Table 6.2 shows

the results of these optimizations compared to the upper bound values estimated

in Section 6.1.5, multiplied by 3.6µm2 which is the area of 2 fan-in XOR gates in

Synopsys. Also, the optimized version uses 3 and 4 fan-in gates. Comparing H3

hash and SRAM area in Table 6.3, hash logic is about one twentieth of the SRAM

area for parallel SEP and s=3 2Kbit signatures. Note that the hash logic grows

linearly with the filter size, so the fraction of H3 hash logic with respect to SRAMs

is more negligible as filter size grows. Locality-sensitive hashing (not shown) uses

about 12.5 bits per column of hash matrices on average, thus reducing area up
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Table 6.2: Implemented synopsys optimized XOR hash area versus estimated

unoptimized upper bound area using 2 fan-in XOR gates (in µm2).
Filter 4Kb (m = 12) Implemented Estimated

Regular SEP 945.36 2073.6

Regular MS 1709.28 4492.8

Parallel SEP 822.96 1728

Parallel MS 1494.71 3801.6

Parallel MS s=3 994.32 2376

to 3% with respect to generic H3 implementation.

Table 6.3 shows the area required by PBX implementation of hash functions

as a hardware cost lower bound for H3-type signatures. PBX is about four

times as concise as H3 for parallel SEP and s=3 signatures, because only an

XOR gate per index bit is needed instead of a whole XOR tree of height four.

Table 6.3 shows a fourfold increment in time and energy for H3 implementation of

hash functions compared to PBX. PBX exhibits best implementation figures and

performs similarly to H3 [111], however, PBX lacks generality, because a previous

study of the entropy of workloads must be carried out to enable better signature

performance. Last but not least, H3 delay could be hidden by pipelining the

index generation and the access to the SRAMs.
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7 Scalability Analysis

In this chapter we perform a scalability study of signatures in the HTM sys-

tem discussed in Section 3.1.3. Throughout this thesis, we have been testing our

proposals with the STAMP benchmark suite and fixed parameters, while varying

the signature size. However, in this chapter we keep the size of the signature

constant and vary the parameters of the workload. Although the STAMP bench-

marks can be parameterize to exhibit different transactional characteristics, like

increased contention or different transaction lengths, such characteristics cannot

be easily decoupled from each other, so we have used other Stanford benchmark

specially developed for orthogonal characteristic analysis, called EigenBench.

EigenBench is proposed by Hong et al. [46] as a lightweight microbenchmark

that can emulate a set of orthogonal application characteristics which are use-

ful in understanding the performance of a TM system. It can, for example,

separate the effect of working-set size from the size of transactions which are

characteristics that are usually tied each other. Besides orthogonal characteris-

tics, EigenBench is able to mimic application-based benchmarks whose memory

patterns are known in advance and represent realistic workloads. Furthermore,

we can generate performance pathologies [9] that can be detected in several TM

systems.

Regarding the signature size, we have chosen 4Kbit filters per data set and

4 hash functions in our experiments. Sanchez et al. [92] perform a study of

signatures in real systems, where they use such sizing values for the signatures.

They estimate a die size increase of 0.10% in an AMD Barcelona quad-core CMP

without multithreading (0.25% per core), and a die size increase of 1.1% for

the Sun Niagara 8-core, 4-way multithreading CMP (4.1% of core size increase,

because we need a signature per thread context). They conclude that those

121
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area numbers are relatively small (half of the instruction cache area in Niagara)

compared to the overall processor core area.

The remainder of the chapter is organized as follow. Section 7.1 discusses the

EigenBench implementation. Section 7.1.1 describes the modifications that we

have made to EigenBench in order to include spatial locality and to adapt it to the

simulation environment. Section 7.1.2 deals with the orthogonal characteristics

that can be expressed with EigenBench. Section 7.2 discusses the results obtained

for each characteristic we have explored: contention in Section 7.2.1, transaction

length in Section 7.2.2 and concurrency in Section 7.2.3. Finally, Section 7.2.4

deals with the working set problem of EigenBench.

7.1. The EigenBench Benchmark

EigenBench is a simple algorithm to generate random memory access patterns.

The pseudocode of its core is shown in Figure 7.1. There are two global arrays: a

hot array which is shared between all threads and accessed transactionally; and a

mild array, which is also accessed within a transaction, but each thread works on

its own array partition, so accesses will not cause conflicts. Sizes of the arrays,

N_HOT and N_MILD, are configurable parameters of the application, as well as the

arguments of the test_core function.

The core transaction, lines 8–25, performs a set of read and write memory

accesses to the global arrays. Specifically, total is the number of accesses that

are executed per transaction. The total variable, in line 5, results of the summa-

tion of R_HOT, W_HOT, R_MILD and W_MILD application parameters, which hold the

number of read and write actions to be performed on the hot and mild arrays.

Function rand_action, lines 10 and 29, randomly chooses between reading or

writing the arrays, and decrements the variable corresponding to the action cho-

sen. Such variables are previously instantiated with the application parameters

(see line 7). Then, depending on the action, the transaction reads or writes a

random location of one array (lines 11–22). The rand_index function calculates

the random location index within the limits of the chosen array. If application

parameter lct is not zero, then an already accessed index is randomly chosen

from the history buffer, a local array that holds the last accessed array loca-

tion indexes, with lct probability. Finally, once the transaction has committed,

EigenBench performs R_OUT + W_OUT operations outside the transaction before

executing the next transaction. A total of loops transactions are executed.
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1 global long array_hot[N_HOT];

2 global long array_mild[N_MILD];

3 void test_core(tid, loops, lct, R_HOT, W_HOT, R_MILD, W_MILD, R_OUT, W_OUT) {

4 long val=0;

5 long total = W_HOT + W_MILD + R_HOT + R_MILD;

6 for (i=0; i<loops; i++) {

7 (r_hot, w_hot, r_mild, w_mild) = (R_HOT, W_HOT, R_HOT, W_MILD);

8 BEGIN_TM();

9 for (j=0; j<total ; j++) {

10 switch(rand_action(r_hot, w_hot, r_mild, w_mild)) {

11 case READ_HOT:

12 index = rand_index(tid, lct, array_hot);

13 val += TM_READ(array_hot[index]);

14 case WRITE_HOT:

15 index = rand_index(tid, lct, array_hot);

16 TM_WRITE(array_hot[index], val);

17 case READ_MILD:

18 index = rand_index(tid, lct, array_mild);

19 val += TM_READ(array_mild[index]);

20 case WRITE_MILD:

21 index = rand_index(tid, lct, array_mild);

22 TM_WRITE(array_mild[index], val);

23 }

24 }

25 END_TM();

26 val += local_ops(R_OUT, W_OUT, val, tid);

27 }

28 }

29 action rand_action(r_hot, w_hot, r_mild, w_mild) {

30 // With uniform random probability based on r_hot, w_hot, r_mild, w_mild

31 // randomly choose one among: READ_HOT, WRITE_HOT, READ_MILD, WRITE_MILD.

32 // Then, decrease corresponding variable (r_hot, r_mild,...) by one.

33 }

34 long rand_index(tid, lct, array) {

35 // With probability of lct, choose a saved index from the history buffer, or

36 // randomly choose an index from range [0, N_HOT-1] or [tid*N_MILD,

37 // (tid+1)*N_MILD-1] and save it to the history buffer.

38 }

39 long local_ops(r_out, w_out, val, tid) {

40 // Perform r_out reads and w_out writes on a private array in random order.

41 }

Figure 7.1: Pseudocode of EigenBench core function.
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7.1.1. Modifications to EigenBench

We have modified EigenBench to adapt it to the simulation environment de-

scribed in Section 3.1, and to simulate spatial locality of reference.

EigenBench is released to work with TL2 [29], an STM system where trans-

actional accesses must be explicitly annotated. The TM_READ and TM_WRITE in-

structions showed in Figure 7.1 are used to do so. Hence, other non-annotated in-

structions are not tracked by the STM system. However, we use an implicit HTM

system (see Section 3.1) where all instructions enclosed by a transaction are im-

plicitly taken as transactional. Then, calls to random function inside rand_action

and rand_index functions are tracked by the transactional system provoking the

serialization of transactions. To solve it, we used a Mersenne twister pseudoran-

dom generator per thread, as pointed out in Section 3.2.2.

EigenBench, as is, generates random memory traces that can be biased by the

lct parameter to introduce temporal locality of reference with a given probability.

We have modified the benchmark to include spatial locality of reference. We have

defined the parameter lcs as the probability that an access is nearby located to

a preceding access. For the spatial locality distribution we have used the notion

of random walk introduced by Thiébaut et al. [99]. The sequential accesses of the

program to memory can be modeled as a random walk through a one-dimensional

integer array. This integer array is main memory, the walker is EigenBench, and

the jumps correspond to the gaps between consecutive accesses. The length

of each jump is a sample value of the random variable X with the following

probability distribution:

Pr[X > u] =
(u0

u

)θ

,

where u > 0, and u0 and θ are constants. The parameter θ describes the spatial

locality of the random walk. As θ increases, the walk gets more locally distributed.

We have chosen θ = u0 = 1, so that the random walk is governed by the simplest

form of the Zipf distribution [52], where the first most common jump is of length

u = 1, second most common jump (u = 2) occurs 1/2 as often as the first, the

third most common jump (u = 3) occurs 1/3 as often as the first and so on.

Figure 7.2 shows the pseudocode of the modification to EigenBench including

the locality random walk. We have limited the jumps to a length of sixteen.

Thus, jumps of length 1 have a probability of 0.3, while the probability of jumps

of length 2 is 0.15, 0.1 for length 3, and so forth. To get such a Zipf distribution

from a random distribution that equiprobably yields numbers between 0 and

1023, we have defined an array, in lines 2–3, with the boundaries of the intervals

for each jump following the probabilities above. If the random number, in line
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1 long history_buffer[N_HB];

2 int zipf = {303, 454, 555, 631, 692, 742, 785, 823, 857, 887, 915, 940, 963,

3 985, 1005, 1024};

4 long rand_index(tid, lct, lcs, array) {

5 ... // Original code

6 if(// generate a locality random walk with probability lct) {

7 int sign = random([-1, 1]); // The jump can be positive or negative

8 int rand = random([0 1023]); // A random number between 0 and 1023

9 // If rand is in [0, 303) the jump is 1. If in [303, 454) the jump is 2, ...

10 for(jump=1; jump<=16; jump++)

11 if(rand < zipf[jump-1]) break;

12 addr = top(history_buffer); // Get the last accessed location

13 x = (addr+sign*jump); // Perform the jump

14 push(hist, x); // Insert the new accessed location in the history buffer

15 return x;

16 } }

Figure 7.2: Pseudocode of the function that generates the locality random walk.

8, is lower than the first interval boundary, i.e. rand ∈ [0, 303), then the jump is

of length 1. If rand ∈ [303, 454), the jump is of length 2, and so on. The length

of the jump is calculated in lines 10–11. At the end of the for loop, the variable

jump holds the length of the jump to be performed, so the following lines get the

last accessed location from the history buffer, and the jump is added to it, thus

forming the new location to be accessed, which is inserted in the history buffer

and then returned. Note that the jump can be randomly added to or subtracted

from the last address accessed (lines 7 and 13).

7.1.2. Orthogonal TM Characteristics

EigenBench can be used to simulate a given execution pattern that exhibits

a series of orthogonal TM characteristics. Hong et al. [46] define a set of eigen-

characteristics that are orthogonal each other, but they can be used combined to

express more conventional non-orthogonal characteristics. The eigen-characteristics

are the following:

Concurrency : It defines the number of concurrently running threads of the

application.

Working-set Size: It is the size of the used memory. Can be expressed as

the summation of the size of the arrays used by EigenBench.

Transaction Length: Defined as the number of reads and writes inside a
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transaction, it can be worked out by adding R_HOT, W_HOT, R_MILD and

W_MILD.

Pollution: The number of writes (W_HOT+W_MILD) with respect to transac-

tion length is defined as pollution.

Temporal Locality : It is the probability of repeated addresses per shared

accesses.

Contention: The probability of conflict of a transaction. See Section 7.2.1.

Predominance: It is defined as the fraction of transactional access cycles to

total execution cycles.

Density : It measures the fraction of non-shared cycles executed outside

transactions to total non-shared cycles, out and inside transactions.

In next section, we study the behavior of our proposals with EigenBench

varying contention, transaction length and concurrency characteristics. Spatial

locality is added to the eigen-characteristics above, and its effect is also discussed.

7.2. Experimental Evaluation

We used the simulated target system described in Section 3.1.3 as the base

HTM system for the experiments. Signature size was set to 4Kb per data set

and 4 hash functions for imperfect signatures. All experiments show speedup of

our signature proposals with respect to the unprotected (neither locks nor trans-

actions) serial version. Also, the unprotected concurrent version is shown, which

is an upper bound of available performance. Of course, such a bound is not

achievable in the presence of contention, since the protection of locks or trans-

actions would serialize the conflicting critical section. Finally, perfect signatures

and parallel signatures are shown for comparison.

Section 7.2.1 studies the effect of contention, Section 7.2.2 discusses transac-

tion length, and Section 7.2.3 deals with concurrency in transactional memory.
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7.2.1. Contention Results

Contention is defined in [46] as the probability of conflict of a transaction,

and an approximate expected value is proposed:

Pconf = 1 −

(

1 − min

{

1,
(NTH − 1)W ′

HOT

NHOT

})W ′

HOT +R′

HOT

. (7.1)

Expression 7.1 is deduced as follows. Let W ′
HOT and R′

HOT be the number of

accesses to different addresses in the hot array. R′
HOT can be defined as

R′
HOT =

{
1 if lct = 1

⌈(1 − lct)RHOT ⌉ otherwise
,

and W ′
HOT is defined in the same way. If we have NTH threads and the hot

array length is NHOT , then the probability that an access in a transaction causes

a conflict is (NTH − 1)W ′
HOT /NHOT , which stands for the number of writes

performed by the other transactions divided by size of the array. It is supposed

that NHOT ≫ W ′
HOT . Then, 1 − ((NTH − 1)W ′

HOT /NHOT ) is the probability

that an access does not cause a conflict, which happens W ′
HOT + R′

HOT times.

The complement of that is the probability of a conflict of Expression 7.1.

Table 7.1 shows the parameters of EigenBench for the analysis of contention.

Contention ranges from 0.03 to 0.97 by varying the size of the hot array, NHOT ,

from 1K to 128K long elements. We test two configurations. One with short

transactions and another with long transactions, which in turn is tested with

different values of spatial locality, lcs ∈ {0, 0.25, 0.5, 0.75}. Predominance is kept

at 80% with the given ROUT and WOUT values. Each thread of the parallel

version executes loops = 128 transactions, while the serial version executes 128 ∗

15 transactions.

Figure 7.3 shows the results obtained from the simulator. Figure 7.3a depicts

the results of the parameter configuration that defines short transactions. We

can see that the unprotected version of the code do not achieve the maximum

speedup available, which is 15. Instead, it is 11× as fast as the serial version.

The problem lies in the implementation of EigenBench, as the mild array is of

size NMILD ∗NTH , so the serial version works with a mild array of size NMILD,

whereas in the concurrent version, the mild array is 15 times larger. Then, the

cache hierarchy makes the serial version goes faster than the parallel one (see

Section 7.2.4 for a further explanation). Also, the network traffic increases since

the hot array is shared between 15 cores, and this gets worse as contention is

higher. Figure 7.3a also shows that all signature variants perform the same as

perfect signatures when transactions are short and signature size is large enough
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(a) Xact length: Short
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(b) Xact length: Long. LCS: 0%
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(c) Xact length: Long. LCS: 25%
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(d) Xact length: Long. LCS: 50%
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Figure 7.3: Contention results for 15 threads.
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(4Kbit in this case). Notice that our proposals do not harm the performance of

short transactions.

Next experiments use long transactions, and signature length is kept at 4Kbit

per data set. Table 7.1 shows the parameters we used. RMILD and WMILD

changed to 200. The rest of parameters keep the same except for ROUT and

WOUT that were modified to maintain 80% of predominance. Figure 7.3b shows

the results obtained without spatial locality. The speedup now drops significantly

due to the aforementioned issues. However, our proposals perform better than the

parallel signature version since, although the accesses are randomly distributed,

some of them are arbitrarily nearby enough to take advantage of locality-sensitive

signatures. Figures 7.3c, 7.3d and 7.3e show results in which spatial locality is

set to 25%, 50% and 75% respectively. The speedup of all versions improves as

locality increases, since the cache hierarchy is better harnessed. Also, the system

works at 64 byte block granularity, so certain accesses nearby each other will

be in the same cache memory block as the arrays comprise long elements of 4

bytes each. Thereby, spatial locality implies some amount of temporal locality

which improves the performance. In any case, our signature proposals perform

similar to or better than the parallel signature in the explored cases, and they

practically match the performance of perfect signatures when locality is 75% in

Figure 7.3e. Finally, note that too much contention can lead the HTM system to

perform worse than the serial version.

7.2.2. Transaction Length Results

To study the effect of transaction length we used the parameters showed

in Table 7.1. Again, we have two configurations. In the first one, which we

have called symmetric, transactions read the same number of locations than they

write, while in the second one, asymmetric, there are three times more reads than

writes. We have set RHOT and WHOT to zero in order to have no contention.

Also, predominance is 100% as ROUT = WOUT = 0. Locality has been set to

25%.

Figure 7.4a shows the results for the symmetric configuration parameters in

Table 7.1. Maximum speedup is about 11× the serial for the shortest transaction

length of 40 elements. As we discussed in the last section, this is due to the

working set effect discussed in Section 7.2.4. Perfect signatures perform similar

to the unprotected version in this case, as contention is set to 0. However,

a small performance drop can be appreciated as transaction length increases,

due to a small fraction of aborts that might be caused by false sharing. The
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Table 7.1: Parameters of EigenBench for the experiments.
Contention Xact Length Concurrency

Param
Xact Length: Xact Length:

Sym Asym Non-local Local
Short Long

NTH 15 15 15 15 [1, 15] [1, 15]

loops 128 128 128 128 [1920, 128] [1920, 128]

NHOT [1K, 128K] [1K, 128K] 128K 128K 128K 128K

NMILD 1M 1M 1M 1M 1M 1M

RHOT 45 45 0 0 45 45

WHOT 5 5 0 0 5 5

RMILD 45 200 [20, 320] [30, 480] 200 200

WMILD 5 200 [20, 320] [10, 160] 200 200

ROUT 18 49 0 0 49 49

WOUT 2 41 0 0 41 41

lct 0 0 0 0 0 0

lcs 0 0, 0.25, 0.5, 0.75 0.25 0.25 0 0.5
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Figure 7.4: Transaction length results for 15 threads.

results for imperfect signatures, the parallel one and our proposals, get affected

by false conflicts due to false positives in the filters. The performance with parallel

signatures drops quickly from transaction length 160 onwards. Parallel signatures

of 4Kbit per set match the performance of the serial version for transaction length

640. However, our signature schemes perform better than parallel signatures,

although they exhibit a considerable performance degradation with respect to

perfect signatures from transaction length 480 onwards.

Figure 7.4b depicts the results obtained for different transaction lengths and

asymmetric data sets. Now, the read set is three times as large as the write set,
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Table 7.2: Average read set and write set lengths (|RS| and |WS|) measured by

the HTM system compared to that of EigenBench input parameters. Transaction

length is |RS| + |WS|, and the RS to WS ratio is |RS|
|WS| .

Parameters Measured

|RS| + |WS| |RS| |WS|
|RS|
|WS|

|RS| + |WS| |RS| |WS|
|RS|
|WS|

40 30 10 3 79.2 55.2 24.0 2.3

80 60 20 3 138.6 94.8 43.8 2.2

160 120 40 3 243.2 161.3 81.9 2.0

320 240 80 3 391.2 265.0 126.2 2.1

480 360 120 3 531.5 367.4 164.1 2.2

640 480 160 3 671.6 469.5 202.0 2.3

as seen in Table 7.1. We can see that the best results using imperfect signatures

are yielded by our MS s = 3 L2 signatures, that can cope with the data set

asymmetry. Reconfigurable asymmetric signatures have been also tested, so that

the configuration parameter a is 5 and 6. With a RS to WS ratio of 3, ASYM

a = 6 should achieve the best results. However, performance is very poor for such

a configuration, and ASYM a = 5 gets better results. This is because of the HTM

system, which is an implicit HTM system where every memory access enclosed

by a transaction is implicitly tracked by the TM system. Reads and writes to the

hot and mild arrays, which are the accesses that we used to get the transaction

length, are not the only memory accesses within transactions since rand_index,

rand_action, and other control code perform memory accesses that are tracked

by the TM system. Therefore, we show in Table 7.2 the real RS and WS lengths

measured by the HTM simulator, and the corresponding transaction length taken

from the input parameters of EigenBench. Note that the transaction length is

longer when using an implicit HTM system. Now, the RS to WS ratio is not

three as inferred by the input parameters. Instead, the ratio is about two, which

is closer to 5
3 , the ratio of ASYM a = 5 filters, than to 6

2 , which is the ratio of

ASYM a = 6 filters. Thus, ASYM a = 5 yields better results for reconfigurable

asymmetric signatures.

7.2.3. Concurrency Results

In this section we study the scalability of signatures in terms of concurrency.

The parameters in last columns of Table 7.1 were used to perform the experi-

ments. Figure 7.5a shows the results obtained in the absence of spatial locality.

We get poor results because of the working set effect explained in Section 7.2.4.

We have measured and increasing speedup of our (5, δP )-LS signature with re-
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Figure 7.5: Concurrency results for 15 threads.

spect to the parallel conventional signature of [1, 1.02, 1.08, 1.23, 1.33], for 1, 2, 4,

8 and 15 threads of concurrency respectively.

The results depicted in Figure 7.5b include the locality parameter set to

50%. Now, we obtain better results when comparing our (5, δP )-LS signatures

to parallel conventional signatures. In this case, we get a relative speedup of

[1, 1.02, 1.08, 1.23, 1.41]. We can see that our signature proposals scale better

than the parallel conventional signatures. Also, it seems that the more cores are

available, the worse the effect of false conflicts in imperfect signatures is. So,

better signatures will be needed for future many-core processors.

7.2.4. The Working Set Effect

Figure 7.6 shows speedup and total misses (L2 misses) of the unprotected

version of EigenBench varying the working set characteristic. The parameters

used in these experiments are all set to 0 except NMILD which varies from 8K

elements to 8M elements per thread. The working set showed in Figures 7.6a

and 7.6b are worked out by multiplying the values of NMILD by 4, since each

element of the mild array is a long value of 4 bytes. Also, RMILD and WMILD

are set to 50 each. Then, as parameter loops is set to 1920 for the serial version,

1920 ∗ 50 ∗ 2 ∗ 4bytes = 750KB are read or written by the serial version of

EigenBench (the blue line in Figure 7.6a). In the parallel version, each of the

fifteen threads performs 128 loops, so 128 ∗ 50 ∗ 2 ∗ 4bytes = 50KB are read or

written by each thread in the parallel version of EigenBench (the green line in
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Figure 7.6: Working-set results for 15 threads. NMILD varies from 8K to 8M

elements of 4 bytes. RMILD =WMILD =50. The rest of parameters are set to 0.

Figure 7.6a).

Therefore, if we have a working set of 32KB, by the pigeonhole principle,

the serial version will traverse its entire mild array (32KB), provided that the

random generator is good, and then, it will repeat accesses to the same memory

locations which are already in the cache hierarchy (L2 is 8MB, L1D is 32KB), until

750KB accesses are performed. On the other hand, each thread of the parallel

version will traverse its entire mild array partition (32KB), until 50KB accesses

are performed, so there will be repetitions as well. However, with a working set

of 64KB, the serial version still complies with the pigeonhole principle, whereas

in the parallel version, 50KB is less than 64KB and repetitions are less likely.

As we increase the working set, repeated accesses to the same locations are less

probable in the parallel version, while the pigeonhole principle still applies for the

serial one, which explains the speedup degradation from 32KB to 1024KB. From

1024KB onwards, the 750KB accessed by the serial version can be performed

without repetition, and the serial version begins resembling the parallel version

until both are accessing memory locations without repetitions. Note that the

speedup curve decreases and increases gradually, but not abruptly. One might

expect a heaviside step function once the working set surpasses the blue line that

represents the number of memory bytes accessed by the serial version. However,

the imperfect random generator and the effect of cache block granularity make

that repeated accesses still persist and disappear gradually.
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In Figure 7.6b, we can see how L2 cache misses increase with the working

set. Having a block size of 64 bytes and array elements of 4 bytes, an access to

an element of the array brings to cache 15 contiguous elements of the array that

will not cause cache misses. As the working set increases, those 15 elements of

the block are less likely to be accessed because of the random access pattern and

the non-fulfilment of the pigeonhole principle. Also, the parallel version accesses

more different memory locations than the serial one when the working set is small,

and therefore, more compulsory misses are accounted. When the working set is

32MB the number of misses equalizes.



Conclusions and Future Work

In the era of multicore processors, there is an increasing interest in finding

new programming paradigms that can ease the writing of concurrent programs.

Harnessing the power available in these machines has turned out to be a complex

task, specially when programmers are used to dealing with uniprocessor systems.

In order to tackle this problem, Transactional Memory emerges as an alternative

to conventional multithreaded programming to ease the task of exploiting multi-

core processors. As a matter of fact, Hardware Transactional Memory is gaining

popularity to such an extent that main processor manufactures like Intel, AMD

and Sun Microsystems are working to include transactional extensions to their

new chip multiprocessor models.

In the context of Hardware Transactional Memory, we have proposed several

optimizations of the conflict detection mechanism, which has been proved to be

a critical part of the system. Specifically, our proposals focus on novel signature

implementations that are used in helping the virtualization of the transactional

system.

The first signature scheme proposed in this thesis is the Interval Filter. It is

an alternative to Bloom-based signatures that holds the addresses of the mem-

ory locations accessed by a transaction in terms of intervals. The Interval Filter

manages to outperform the conventional Bloom signature scheme when the ap-

plications exhibit a locality access pattern such that a few large intervals of con-

tiguous addresses can be created. This is the case of certain benchmarks of the

STAMP benchmark suite like Kmeans and Labyrinth. However, our signature

alternative fails to perform better than Bloom signatures in the presence of lots

of random single accesses or small intervals, since it is implemented as a fully

associative memory that cannot expand too much if we want it to keep as concise

as possible. Consequently, the Interval Filter is not a general solution but could

be an option in case of embedded systems where we are able to know the access

pattern of the application in advance.
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The next contribution of this thesis is in the line of harnessing spatial locality,

and it is based on Bloom filter signatures, which provide us with a more general

solution than that achieved by Interval Filters. We have named it Locality-

Sensitive Signatures, which define new maps for the hash functions to reduce

the number of bits inserted in the filter, for the addresses with spatial locality.

That is, nearby memory locations share some bits of the Bloom filter. As a

result, false conflicts are significantly reduced in transactions that exhibit spatial

locality in their read or write sets, but the false conflict rate remains unalterable

for transactions that do not exhibit locality at all. We propose several Locality-

Sensitive Signature variants and we can conclude that most of them perform

equal or better than conventional signatures. However, we find that the δP

version of Locality-Sensitive Signatures, which is define piecewise with different

granularity per hash function, beats the rest of signatures in that it behaves more

evenly whatever the benchmark, and outperforms most of them in most of cases.

Finally, as Locality-Sensitive Signatures are based on new locality-aware hash

maps, their implementation does not require extra hardware, moreover, we can

save up to 3% of XOR logic gates.

Last proposals we contribute with tackle the asymmetry in transactional data

sets. Conventional signatures track read and write accesses with two separate,

same-sized Bloom filters, whereas transactions frequently exhibit read and write

sets of uneven cardinality, which introduces inefficiencies in the use of signatures.

The first optimization we propose in this context is the Multiset Signature. It

uses a single Bloom filter to track both read and write sets, and thereby the false

positive rate of both sets tend to be similar each other. We find that Multiset

Signatures outperform conventional signatures in most cases, except for trans-

actions whose size exceeds a given threshold. Also, as Multiset Signatures need

double-ported SRAMs for their implementation, we propose an improvement in

order to reduced the amount of hardware needed by multiported SRAMs, whose

size grows quadratically with the size of the array. Given that a considerable

amount of data is both read and written within a transaction, we proposed Mul-

tiset Shared Signatures, where certain filters of the parallel implementation of the

Multiset Signature have only one hash function shared between the read set and

the write set, while the rest maintains two hash functions that map addresses of

read and write sets into the same filter. This scheme has a part of the signa-

ture that is unable to distinguish between read and write accesses, which intro-

duces a source of read-read dependencies, and a part that is able to differentiate

them. Multiset Shared Signatures are improved by including the aforementioned

Locality-Sensitive feature averaging a 47% increase in performance without in-

creasing the hardware needed for their implementation.
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A different approach to deal with asymmetry in transactional data sets is

our Reconfigurable Asymmetric Signature. It starts from a conventional parallel

signature where the various subarrays that comprise the signature can be con-

figured to belong to the read set or to the write set. Thus, via a reconfiguration

mask register, we can configure the signature to have the read filter larger than,

equal to or smaller than the write filter. Such a configuration can be performed

on either a per-transaction or a per-application basis. We propose a heuristic

to configure the signature on a per-application basis that involves profiling the

application to get the average read set to write set ratio. We found that such

a heuristic is a good although non-optimal approach to get the most out of our

Reconfigurable Asymmetric Signatures.

Finally, we study the response of the conventional signature proposals com-

pared to our signature optimizations when we stress the transactional system

in terms of contention, transaction length, and number of concurrent transac-

tions. We have used a novel benchmark for the orthogonal characteristic study

of TM systems, so-called EigenBench, which has been modified to include the

modelling of spatial locality of reference. The results show that contention can

seriously harm the execution of transactional code to such an extent that the

parallel version of the workload performs worse than the serial version. Our

signature proposals can ameliorate the performance degradation of the system,

most importantly when the workload exhibits a certain amount of spatial local-

ity. Unfortunately, both imperfect signatures and perfect signatures converge,

thus limiting the room for improvement in imperfect signature development. As

regards transaction length, we also obtain better results than conventional signa-

tures designs in most cases. However, we can note a trend towards achieving the

same execution time than conventional parallel signatures as transaction length

grows. In this case, false positives can noticeably harm the execution compared

to the perfect signature. Results also suggest that implicit transactional memory

systems, although easier to program, might have unpredictable effects in trans-

actional length that can mislead the configuration of reconfigurable asymmetric

signatures, if it is carried out on theoretical parameters instead of profiling. Also,

it seems that the more cores are available, the worse is the effect of false conflicts

in imperfect signatures. Our signature optimizations scale better than parallel

conventional signatures.

Transactional Memory has proved to be a novel paradigm which is being

adopted by main processor manufactures. They are introducing in their chips

a best effort approach that executes transactions as long as there are resources

to support them. In this thesis, we have proposed optimizations to signatures

that are used to overcome the limitations of best effort transactional systems.
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However, there is still work to be done in relation to such a virtualization of

the transactional system. To conclude this thesis we can point out the following

future work paths that we think are worth exploring:

Our proposal of reconfigurable asymmetric signatures were tested by us-

ing a per-application configuration strategy which turned out to be a good

solution for the problem of asymmetry in transactional data sets. How-

ever, it would be worth studying a per-transaction basis reconfiguration of

the asymmetric signatures, since the read set to write set ratio can change

between transactions within the same application. On the one hand, we

could use profiling to reconfigure the signature on the beginning of each

transaction. This approach need the definition of a new instruction of the

ISA to configure the signature, and might depends on the input parame-

ters of the application. On the other hand, we could let the transactional

system reconfigure the signature based on information gathered during the

execution, like history of former transactions or statistics of the signature

on abort.

Some results obtained in this thesis expose a problem in transactional mem-

ory that must be addressed if we want it to succeed as a convenient alter-

native to conventional parallel programming. In case of high contention,

transactional memory can perform worse than the serial version of the ap-

plication. Research has been done to reveal the pathologies that can affect

hardware transactional memory [9], and this research line is ongoing with

several works that are aware of the contention problem [73, 102]. In the

context of signature conflict detection transactional memory, we think it is

worth studying how the critical execution of signatures because of high false

conflict rates could be detected. Once detected, subsequent serialization of

transactions whose signatures got spoiled by too much false positives could

be a solution.

As we have seen in the last chapter of this thesis, implicit transactional

systems include redundant memory locations, like private variables, that

pollutes the signatures. Yen et al. [111] and Sanyal et al. [93] tackle the

problem by providing the programmer with special memory allocation con-

structs that define whether a location is private or shared. However, the

programmer must be extremely careful as a mistake in marking objects can

lead to a breakage of program correctness. Explicitly annotated transac-

tional systems can make programming transactional memory difficult [88],

which contradicts the prime purpose it was devised for. The automatic

detection of private memory locations to keep them from pollute signa-
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tures in transactional memory might be a good research line to improve

the performance of the system while maintaining the programmability.

Eager-eager transactional memory systems whose conflict detection mecha-

nism is based on Bloom signatures cannot rely on such signatures to decide

whether written memory blocks must be stored into the undo log or not,

since a false positive might cause not to log a block that should be logged.

These systems need a log filter that holds recently logged blocks to prevent

them from be stored in the log more than once within a transaction. In-

deed, it is an optimizing structure as the system can operate without it.

However, it could be interesting to study the effect in performance of the

log filter, and if it could be possible to add a signature help to such a buffer.

Transactional Memory is a promising paradigm for simplifying the develop-

ment of parallel applications. It is not clear what the future holds, but hardware

industry is betting on it. This thesis is a little contribution to Transactional

Memory, with the hope that it will help on clarifying its future.





Apéndice A

Resumen en español

Hace casi 50 años, Gordon E. Moore predijo que el número de transistores

que podŕıan integrarse en un chip se doblaŕıa cada dos años [68]. La industria

del hardware ha sido capaz de cumplir la profećıa de Moore durante todos estos

años, desarrollando procesadores cuyo rendimiento se ha ido doblando junto con

el incremento en el número de transistores. Sin embargo, en la última década,

dicho rendimiento ha sido más dif́ıcil de extraer. Incrementar la frecuencia del

reloj del procesador ya no es posible debido a problemas de disipación de poten-

cia y refrigeración [74]. Por otro lado, las técnicas de extracción de paralelismo

a nivel de instrucción (ILP) que se han utilizado para crear los procesadores su-

perescalares se ven limitadas por la cantidad de paralelismo de las aplicaciones

secuenciales, que raramente excede la media docena de instrucciones [107]. Como

consecuencia, para suplir la falta de ILP y llenar el cauce de los procesadores

superescalares, se añade la capacidad de aprovechar el paralelismo a nivel de hilo

de las aplicaciones (TLP), convirtiendo estos procesadores en procesadores de

múltiple hilo simultáneo (SMT) [56]. Con la aparición de los procesadores SMT,

se pod́ıa intuir el cambio en la industria de los ordenadores, de la extracción au-

tomática a la extracción manual de paralelismo por parte de los programadores.

Finalmente, los fabricantes de procesadores han decidido desarrollar multiproce-

sadores en un chip (CMPs) [35, 61] con núcleos más sencillos en lugar de grandes

procesadores superescalares con SMT, y dejar en manos de los programadores la

extracción del rendimiento de sus máquinas.

Con la comercialización a gran escala de los CMPs, la industria del hardware

ha pasado a la comunidad del software el problema de la extracción de rendi-

miento de sus procesadores. Sin embargo, la mayoŕıa de los programadores están

acostumbrados a la programación serie, y la programación paralela puede llegar
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a resultarles compleja. El paralelismo de tareas introduce indeterminismo en el

orden en que se acceden las variables de memoria, accesos que tienen que ser

sincronizados en el caso de datos compartidos para evitar inconsistencias debido

a condiciones de carrera entre hilos. La manera más común de sincronizar el ac-

ceso a un conjunto de datos compartidos, o lo que es lo mismo, de proteger una

sección cŕıtica del programa paralelo, es usar cerrojos. Los cerrojos serializan el

acceso a las secciones cŕıticas del programa, por lo que introducen una fuente de

pérdida de rendimiento en las aplicaciones paralelas, aunque aseguran su correc-

ta ejecución. Además, se ha de llegar a una relación de compromiso cuando se

usan cerrojos. Usar pocos cerrojos sobre zonas amplias de memoria incrementa

la contienda entre los hilos por adquirir el acceso a la zona cŕıtica y aumenta

la serialización, pero disminuye la sobrecarga inherente a los cerrojos y facilita

la programación. Por el contrario, usar multitud de cerrojos para proteger pe-

queñas zonas de memoria, como simples variables, disminuye la serialización y

la contienda, pero aumenta la sobrecarga y la dificultad en la programación, ya

que pueden aparecer con más facilidad ciertos problemas asociados a los cerrojos,

como deadlock o convoying. Todos estos problemas, unidos a la imposibilidad

de composición y abstracción que ofrecen los cerrojos, hacen de la programación

paralela un paradigma complejo.

La memoria transaccional (TM) [40, 45, 54] nace para facilitar la tarea de

escribir aplicaciones concurrentes para CMPs, a causa de la complejidad de la

programación paralela. TM toma el concepto de transacción del campo de las

bases de datos y lo redefine como un bloque de instrucciones que parecen ejecu-

tarse atómicamente y en aislamiento, permitiendo su abstracción y composición

al separar la semántica de la implementación. El sistema transaccional ejecuta

las transacciones en paralelo a no ser que detecte algún conflicto entre ellas, mo-

mento en el cual se serializa la ejecución. De esta manera, TM se visualiza como

un modelo optimista de concurrencia, a diferencia de los cerrojos, cuyo modelo

se dice pesimista puesto que la ejecución queda serializada tanto en presencia de

conflictos como en su ausencia. El modelo transaccional suprime en gran medida

las inconveniencias de la programación con cerrojos.

Los sistemas TM pueden implementarse en software (STM) [29, 39, 41, 44, 95]

o en hardware (HTM) [3, 37, 45, 69, 84], aśı como puede darse una hibridación

de ambas implementaciones [26, 53, 90]. Los sistemas STM muestran una notable

degradación del rendimiento debido a la sobrecarga que supone implementar los

mecanismos de detección de conflictos y administración de versiones en software.

Ciertos aspectos de dichos mecanismos pueden ser acelerados por hardware, o

por el contrario, se pueden implementar en su totalidad a nivel de chip, confor-

mando un sistema HTM sin la sobrecarga propia del software. El mecanismo de
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detección de conflictos necesita almacenar todas las direcciones de las posiciones

de memoria accedidas por cada transacción para detectar conflictos entre ellas, y

de esa manera asegurar la atomicidad de las mismas. Mientras que el mecanismo

de administración de versiones necesita almacenar las versiones nuevas o antiguas

de las posiciones de memoria modificadas por cada transacción para asegurar el

aislamiento.

La implementación del mecanismo de detección de conflictos en un sistema

transaccional es un aspecto clave para el rendimiento del mismo. Las primeras

propuestas de sistemas HTM incluyen bits de lectura y escritura transaccional en

cada bloque de la jerarqúıa de caché, y aprovechan el hecho de que los conflictos

se pueden detectar a través del mecanismo de coherencia [45, 69]. El problema

de estos sistemas es que las transacciones no pueden sobrevivir a fallos de capaci-

dad de la caché, cambios de contexto en el procesador, migraciones de hilos en el

CMP y otros eventos propios de la virtualización del sistema, como fallos de pági-

na. Para poder soportar transacciones de duración y tamaño ilimitados se han

propuesto las firmas de transacción para el mecanismo de detección de conflic-

tos [14]. Estas firmas son capaces de mantener un número ilimitado de direcciones

de memoria a costa de obtener falsos positivos, es decir, detectar conflictos que

no existen, por lo que facilitan la virtualización del sistema transaccional. Tam-

bién liberan a la caché de tener que almacenar el estado transaccional de los

bloques, lo que mantiene intacta una estructura tan cŕıtica para el rendimiento

del procesador como es la caché, a la vez que se facilita el cambio de contexto al

tener la información transaccional localizada en la firma. El uso de estas firmas

se ha extendido a multitud de propuestas de sistemas TM, tanto software como

hardware [59, 65, 67, 97, 110].

El objeto de esta tesis doctoral es la optimización de las firmas de detección

de conflictos en sistemas de memoria transaccional hardware. Concretamente, se

proponen optimizaciones para el manejo de transacciones grandes, las cuales ha-

cen que los falsos positivos en las firmas degraden sustancialmente el rendimiento

del sistema debido a la detección de falsos conflictos. Las principales contribucio-

nes de esta tesis en dicho campo de la memoria transaccional son las siguientes:

un filtro de intervalos como alternativa a las firmas tradicionales que se imple-

mentan como filtros de Bloom; una firma sensible a la localidad, que aprovecha

el principio de localidad de referencia que se muestra con frecuencia en los patro-

nes de acceso a memoria de todo tipo de aplicaciones, para almacenar con más

eficiencia las direcciones de memoria accedidas por las transacciones; una firma

multiconjunto que soluciona en gran medida el problema de asimetŕıa que presen-

tan los conjuntos de datos accedidos por las transacciones, en los que el conjunto

de datos léıdos suele ser mayor que el conjunto de datos escritos, lo que lleva a
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desaprovechar los recursos de las firmas, que a menudo se disponen como filtros

del mismo tamaño; una firma asimétrica reconfigurable, que trata el problema de

la asimetŕıa de los conjuntos de datos de las transacciones desde otro punto de

vista; un estudio de escalabilidad de las firmas para la detección de conflictos con

respecto a la contención, el tamaño de los conjuntos de datos y la concurrencia

de transacciones en un sistema HTM; y un estudio completo con simulación y

análisis de las firmas propuestas en esta tesis, utilizando herramientas y grupos

de programas de prueba que son ampliamente usados y reconocidos en el ámbito

de la memoria transaccional.

Las contribuciones anteriormente mencionadas han sido publicadas en confe-

rencias internacionales [79, 81, 82, 83], workshops [80] y revistas catalogadas en

el ISI Journal Citation Reports (JCR) [77, 78], y se resumen en las siguientes

secciones de este anexo.

A.1. Filtro de intervalos

El filtro de intervalos (IF) [81] se propone como una alternativa a los filtros

de Bloom que es capaz de reducir el número de falsos positivos en presencia de

localidad. Se definen los intervalos como un conjunto de direcciones consecutivas

que se pueden extraer de una traza de referencias de memoria. La Figura 4.1

muestra el diseño del filtro, que comprende n intervalos formados por un par

de direcciones de memoria, donde una representa el ĺımite inferior del intervalo

y la otra representa el ĺımite superior. Cada intervalo posee un bit de validez,

V0, ..., Vn−1, y cada ĺımite del intervalo tiene dos ĺıneas que ofrecen información de

comparación. En el ĺımite inferior, dichas ĺıneas indican si la dirección a filtrar más

uno es igual, =l
0, ...,=

l
n−1, o mayor, >l

0, ..., >
l
n−1, al valor almacenado en el ĺımite.

En el ĺımite superior, las ĺıneas indican si la dirección a filtrar decrementada en

uno es igual, =u
0 , ...,=u

n−1, o menor, <u
0 , ..., <u

n−1, al valor almacenado en el ĺımite.

De esta manera, el filtro puede verse como una caché asociativa extendida.

Con la funcionalidad descrita en el párrafo anterior, el IF ofrece las mismas

primitivas que el filtro de Bloom: el chequeo de pertenencia al conjunto de datos

que representa el filtro, y la inserción. Para el chequeo de pertenencia se utilizan

las ĺıneas de comparación de los ĺımites de los intervalos como indica la Figu-

ra 4.1. Sólo hay que comprobar que la ĺınea Match esté activa para saber que hay

un positivo. Aśı, los chequeos son rápidos, sin embargo las inserciones son más

complejas como en el filtro Cuckoo-Bloom [92]. De hecho, aparecen tres casos

diferenciados en la inserción de nuevas direcciones en el IF. En el primer caso,

todas las ĺıneas = están a cero, por lo que la nueva dirección no limita con ningún
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intervalo existente y hay que crear un intervalo nuevo. Si el filtro no está Full no

hay problema. Sin embargo, si no hay intervalos libres hay que agrandar uno

existente, introduciendo aśı falsos positivos. Se busca de manera iterativa el in-

tervalo con el ĺımite más cercano a la dirección, y se cambia dicho ĺımite por la

dirección a insertar. En el segundo caso, una sola ĺınea de = está activa, por lo

que el intervalo correspondiente se amplia insertando la dirección original en el

ĺımite acertado. En el tercer y último caso, un =l
i y un =u

j están activos, lo que

indica que la dirección a insertar es la que falta para unir dos intervalos existen-

tes. Como resultado se funden los dos intervalos en uno y se libera uno de los

intervalos utilizando su bit de validez. El algoritmo de inserción en el IF se puede

ver en la Figura 4.2.

Para evaluar el filtro de intervalos se estimó que un filtro de Bloom con 4

funciones hash y un tamaño de 2K-bit requeŕıa un hardware similar a un IF con

10 entradas, para lo que se utilizó CACTI [100] y Synopsys. Para las simulaciones

se utilizó el módulo Ruby de GEMS [63] para el sistema HTM, y Simics [60] como

simulador de sistema completo dirigido por ejecución. Se utilizaron cuatro ben-

chmarks de la suite STAMP [66] que muestran transacciones de gran tamaño. La

Tabla 4.1 muestra los parámetros de entrada y las caracteŕısticas transaccionales

para dichos benchmarks.

La motivación para el IF viene de la Figura 4.5, en la que se muestra una

clasificación por tamaño de los intervalos hallados en las transacciones de los

benchmarks. En todas las gráficas se puede observar cierta cantidad de direcciones

sueltas, pero la mayoŕıa de direcciones accedidas se pueden agrupar en intervalos

de tamaño mayor que uno mostrando localidad espacial. De hecho, el número de

direcciones sueltas en los benchmarks está entre el 2 % de Kmeans al 22 % de

Yada. En cuanto al tiempo de ejecución, la Figura 4.7 muestra los tiempos para

cada benchmark, normalizados al tiempo del filtro perfecto. Se pueden observar

dos modos de comportamiento en los benchmarks simulados. El IF se comporta

peor que el filtro de Bloom con Bayes y Yada. Ambos benchmarks muestran el

mayor número de direcciones sueltas con un 13 % y un 22 % respectivamente.

Además, el intervalo más largo en Bayes es de 100 direcciones, mientras que la

transacción más larga tiene 2171 direcciones. En Yada el intervalo más largo es

de 11 y la transacción más larga de 578. Todo esto hace que un IF con n = 10

entradas se llene con facilidad y que el primer caso de las inserciones (véase la

Figura 4.2) sea el más frecuente, introduciendo gran cantidad de falsos positivos

que dañan la ejecución. Por otro lado, el filtro de intervalos se comporta de

igual o mejor manera que el filtro de Bloom con Labyrinth y Kmeans. En estos

benchmarks existen pocos intervalos de gran tamaño y un número muy reducido

de direcciones sueltas (4 % y 2 % respectivamente), lo que hace que el IF no se
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llene inmediatamente reduciendo aśı la probabilidad de falso positivo.

El filtro de intervalos funciona para benchmarks con un patrón de acceso

a datos espećıfico en el que predominan pocos intervalos de gran tamaño. Sin

embargo, no se puede decir que sea una solución general ya que puede resultar

dañino para benchmarks que muestran un patrón de acceso aleatorio o con mu-

chos intervalos de pequeño tamaño. Como consecuencia, las siguientes propuestas

se centran en los filtros de Bloom, que muestran un comportamiento homogéneo

para todo tipo de trazas de direcciones.

A.2. Firma sensible a la localidad

La firma sensible a la localidad (LS-Sig) [79, 78, 80] es una optimización del

filtro de Bloom convencional que aprovecha la localidad de referencia de memoria

para reducir la probabilidad de falsos positivos. El filtro de Bloom trata de la

misma manera tanto los patrones de acceso aleatorios como los patrones que

muestran cierta localidad espacial, mapeando las direcciones en bits distintos

dentro del filtro. Sin embargo, la firma LS-Sig mapea las direcciones cercanas

entre śı compartiendo ciertos bits de manera que se reduce la ocupación del filtro

y, por ende, la probabilidad de falsos positivos. Las direcciones que no muestran

localidad se mapean de manera convencional.

Un filtro de Bloom mapea un espacio de 2n direcciones, N = {0, 1, ..., 2n − 1},

en un array de 2m bits (́ındices), M = {0, 1, ..., 2m − 1}, m ≤ n, por medio de una

familia de k funciones de hash, {h0, h1, ..., hk−1}. Las funciones de hash son de la

clase H3 [12], ya que ofrecen una distribución de ı́ndices de calidad muy cercana a

la distribución uniforme. Las funciones de la clase H3 definen una transformación

lineal entre una palabra de n bits y otra de m bits: hi :GF (2)1×n → GF (2)1×m,

donde GF (2) es el campo de Galois de dos elementos [104], bajo la función XOR.

Se definen dos operaciones básicas en el filtro de Bloom: (i) la inserción de una

dirección x, que se realiza poniendo a uno los bits indicados por las funciones

de hash (hi(x) = 1), y (ii) chequear que una dirección ha sido insertada, que

consiste en comprobar si todos los bits indicados por las funciones de hash están

a uno. Sea BF (x0, x1, ..., xq−1) el conjunto de bits puestos a uno tras insertar

una secuencia de q direcciones x0, x1, x2, ..., xq−1. Este conjunto viene dado por
⋃q−1

i=0 BF (xi), siendo BF (x) =
⋃k−1

j=0 hj(x).

Un filtro de Bloom cede falsos positivos que pueden venir de dos situaciones.

Una dirección y no insertada puede producir un falso positivo si otra dirección

x fue insertada en el filtro y BF (y) = BF (x), y 6= x. En tal caso, x e y son
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alias, puesto que aplicados a las funciones de hash, los ı́ndices resultantes son los

mismos. Por otro lado, un falso positivo puede aparecer debido a la ocupación

del filtro, si BF (y) ⊂ BF (x0, x1, ..., xq−1) y la dirección y no es alias de ningún

xi insertado.

Existe una relación entre el número de falsos positivos y el número de fun-

ciones hash que se utilizan en un filtro de Bloom. Un número alto de funciones

favorece a las transacciones pequeñas, ya que disminuye la probabilidad de alias

y, aunque aumenta la ocupación del filtro, al tratarse de transacciones con pocas

direcciones, el filtro no se ve afectado en gran medida. Si el número de funcio-

nes es pequeño, la ocupación se reduce, por lo que las transacciones grandes se

ven favorecidas, aunque existen más alias [92]. Nuestra LS-Sig logra una solu-

ción de compromiso manteniendo un k relativamente elevado para favorecer a las

transacciones pequeñas, mientras que la sensibilidad a la localidad hace que se

inserten menos bits en el filtro reduciendo aśı la ocupación y favoreciendo a las

transacciones grandes.

Haciendo uso de la nomenclatura anterior y basándonos en las definiciones de

hashing sensible a localidad o a distancia que se proponen en [16, 47, 51] para

formular preguntas acerca de la similaridad entre objetos en espacios métricos,

definimos los filtros sensibles a la localidad de la siguiente manera.

Definición A.2.1 Dado un filtro de Bloom que mapea un espacio de 2n direccio-

nes de memoria, N , en otro espacio de 2m bits, M , m ≤ n, a través de una familia

de k funciones de hash de la clase H3, y siendo (N, d) y (℘(M), dh) dos espacios

métricos. Dicho filtro de Bloom se llama (r, δ)-sensible a localidad ((r, δ)-LS), con

r ∈ N y δ : N → N, si, para cualquier x, y ∈ N , se cumple que,

si 1 ≤ d(x, y) ≤ 2r − 1 entonces 0 ≤ dh(BF (x), BF (y)) ≤ δ(d(x, y)) < k.

�

En un filtro de Bloom diseñado según la Definición A.2.1, posiciones cercanas

de memoria se mapean en conjuntos de bits no disjuntos, es decir, comparten

ciertos bits del filtro. La función d es la distancia entre dos direcciones dada por

la XOR bit a bit, d(x, y) = x ⊕ y, mientras que la distancia dh es la mitad de

la cardinalidad de la diferencia simétrica de los conjuntos de bits mapeados de

cada dirección, dh(BF (x), BF (y)) = k− |BF (x)∩BF (y)|. El parámetro r actúa

como el radio de acción de la LS-Sig. Y la función δ se puede definir dependiente

de d, de manera que cuanto más cercanas sean las direcciones, menos disjuntos

serán los conjuntos de bits mapeados. Un ejemplo de mapeo LS-Sig se puede ver

en la Tabla 5.1, donde r = k − 1 y δ se define de manera escalonada.
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Para la evaluación experimental de las firmas LS-Sig se exploraron seis firmas

diferentes resultantes de combinar dos funciones, δ0 y δ1 y tres radios diferentes,

1, 3 y 5. También se propone otra función más homogénea en su comportamiento,

δP , definida a trozos, que se combina con dos radios diferentes, 3 y 5:

1. (r, δ0)-LS: Las direcciones comprendidas en intervalos de radio r (i.e. [0, 2r−

1], [2r, 2r+1 − 1], ...) se mapean exactamente en los mismos bits del filtro.

Lo que significa que 0 ı́ndices son diferentes entre los mapas de dichas

direcciones:

δ0(d(x, y)) = 0 si 1 ≤ d(x, y) ≤ 2r − 1.

2. (r, δ1)-LS: Las direcciones comprendidas en intervalos de radio r se mapean

en los mismo bits excepto uno. Solamente 1 ı́ndice difiere entre mapas:

δ1(d(x, y)) = 1 si 1 ≤ d(x, y) ≤ 2r − 1.

3. (r, δP )-LS: Las direcciones comprendidas en intervalos de radio r se mapean

dependiendo de la distancia entre dichas direcciones. Aśı, la función delta

se define a trozos de la siguiente manera:

δP (d(x, y)) =







1 si d(x, y) = 1

2 si 2 ≤ d(x, y) ≤ 2⌈
r
2
⌉ − 1

3 si 2⌈
r
2
⌉ ≤ d(x, y) ≤ 2r − 1

Por ejemplo, para r = 5, δP se define aśı:

δP (d(x, y)) =







1 si d(x, y) = 1

2 si 2 ≤ d(x, y) ≤ 7

3 si 8 ≤ d(x, y) ≤ 31

Las Figuras 5.5, 5.6 y 5.7 muestran los resultados obtenidos para δ0, δ1 y δP

respectivamente. Las firmas con δ0 muestran buenos resultados para tamaños de

firma pequeños ya que todos las direcciones en un intervalo se mapean en los

mismos bits del filtro, disminuyendo notablemente la ocupación. Sin embargo,

cuando la firma es grande, los falsos positivos debidos a la ocupación casi desa-

parecen y los debidos a los alias hacen que δ0 rinda peor que las firmas de Bloom

genéricas. El rendimiento empeora conforme aumenta el radio ya que los alias

aumentan. Con δ1 al menos un bit del mapa de la dirección es diferente a los

de su mismo intervalo, por lo que el efecto de los falsos positivos debidos a alias

desaparece en gran medida, aunque ciertos benchmarks como Genome, Intruder

y Labyrinth siguen mostrando una ligera cáıda del rendimiento. Finalmente, las

firmas (r, δP )-LS-Sig solventan el problema al definir cada función hash con una
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granularidad distinta. De esta manera, se comporta igual o mejor que las firmas

genéricas con firmas de tamaño grande, y es mejor que ellas cuando la firma es

pequeña. Las firmas (r, δP )-LS-Sig se comportan de manera más homogénea que

δ0 y δ1 para todos los benchmarks.

A.3. Firmas multiconjunto y asimétrica

Las firmas multiconjunto y asimétrica reconfigurable [77, 82, 83] se proponen

para tratar la asimetŕıa que se encuentra con frecuencia en los conjuntos de datos

léıdos y escritos por las transacciones (véase la cardinalidad de los conjuntos de

datos en la Tabla 6.1). Las firmas convencionales disponen de dos filtros de igual

tamaño para almacenar las direcciones de la transacción, uno para las direcciones

léıdas y el otro para las escritas. Por lo tanto, en la mayoŕıa de los casos se hace

una utilización ineficiente de la firma de detección de conflictos.

La firma multiconjunto une los filtros de lectura y escritura en un solo filtro de

tamaño doble: 2m+1. La Figura 6.1b muestra su implementación. Las funciones

de hash del conjunto de lectura y del conjunto de escritura trabajan sobre todo

el filtro. Por lo tanto, es necesario que la SRAM que implementa el filtro sea

de 2k puertos, lo que hace que su tamaño crezca cuadráticamente. Para mitigar

dicho aumento de hardware, la firma multiconjunto se puede implementar de

forma paralela [92]. El filtro se divide en k subfiltros más pequeños de tamaño

2m+1/k, de manera que los filtros pasan de tener 2k puertos a tener sólo 2, uno

para el conjunto de lectura y otro para el de escritura, como se puede ver en el

Figura 6.2b. Aún aśı, una SRAM de doble puerto sigue ocupando más espacio

que una SRAM convencional por lo que para reducir la complejidad de las firmas

multiconjunto se proponen las firmas de multiconjunto compartido. Estas firmas,

como indica la Figura 6.3a, se implementan como una firma multiconjunto en la

que s SRAMs, s ∈ [0, k], poseen un solo puerto, y el resto, k− s, siguen siendo de

doble puerto. De esta manera, ciertos subfiltros no diferencian entre direcciones

léıdas y escritas al tener una sola función de hash. Este diseño de firma viene

motivado por los datos expuestos en la Figura 6.12, que muestran el porcentaje

de direcciones que fueron exclusivamente léıdas, exclusivamente escritas, y léıdas

y a su vez escritas dentro de las transacciones para cada benchmark. Por ejemplo,

Bayes y Kmeans muestran un 100 % de direcciones escritas que fueron a su vez

léıdas. En general, un 30 % de las direcciones accedidas transaccionalmente son

léıdas y escritas en los benchmarks objeto de estudio. Descifrar el valor adecuado

del parámetro s supone un compromiso entre los requisitos de hardware y el

rendimiento de la firma. Para valores altos de s cercanos a k la firma tiene más
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SRAMs de un solo puerto por lo que se acerca a la firma paralela en cuanto a

cantidad de hardware pero los subfiltros pierden la capacidad de discernir entre

direcciones léıdas o escritas, y vice-versa. En la experimentación exploramos cada

posible escenario.

Otra aproximación para solucionar el problema de la asimetŕıa en los con-

juntos de datos es nuestra firma asimétrica reconfigurable que se muestra en la

Figura 6.3b. La firma reconfigurable parte de una firma paralela convencional

como la de la Figura 6.2a, a la que se añade un registro de máscara y una lógi-

ca que se utiliza para configurar el número de pares (función de hash, SRAM)

que se dedica a cada conjunto de datos. Aśı, en lugar de tener k subfiltros para

el conjunto de lectura y otros k subfiltros para el de escritura, el parámetro a

del registro de máscara permite definir la distribución de tales subfiltros entre los

conjuntos de datos de manera variable. El registro de máscara se puede instanciar

con el valor de a por medio de una instrucción del conjunto de instrucciones, o

por el sistema transaccional. En cualquier caso, el problema es encontrar la confi-

guración adecuada para que la firma rinda de la mejor manera posible. Además,

se pueden contemplar dos maneras distintas de reconfiguración, una estática por

ejecución y otra dinámica por transacción de la ejecución. En esta tesis no se trata

este problema, pero se propone un heuŕıstico para su configuración por ejecución

dependiendo de las caracteŕısticas transaccionales de la aplicación.

Los resultados experimentales de las firmas multiconjunto se muestran en la

Figura 6.9. Se puede observar una mejora de rendimiento para Bayes, Genome,

Intruder, Vacation y Yada, con un speedup que va de 1,2× a 2,5× dependiendo

del benchmark y el tamaño de la firma, tanto para la firma normal como la

paralela. La Figura 6.10 muestra el porcentaje de falsos positivos para la firma

separada y la multiconjunto. La columna correspondiente a la firma multiconjunto

está dividida en falsos positivos y falsos positivos cruzados. Estos últimos resultan

del hecho de que el filtro es compartido por las funciones de hash pertenecientes

al conjunto de lectura y de escritura, por lo que el llenado del filtro por culpa

de las lecturas puede ocasionar falso positivos de escritura y vice-versa. Aún

aśı, el porcentaje total de falsos positivos se mantiene más bajo. Nótese que el

filtro multiconjunto ecualiza los falsos positivos de lectura y escritura. Por otro

lado, Kmeans y Labyrinth se comportan peor con las firmas multiconjunto para

tamaños de firma pequeños. Estos benchmarks generan muchos falsos positivos

cruzados en la firma y también muestran una cardinalidad media elevada de sus

conjuntos de lectura y escritura (véase la Tabla 6.1), lo que hace que la ocupación

del filtro exceda en muchos casos el umbral de 2/3 a partir del cual se ha visto

que la firma multiconjunto empieza a ceder más falsos positivos que la firma

separada.
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Para mejorar el rendimiento de las firmas multiconjunto y a su vez reducir

sus requisitos hardware se estudian las firmas de multiconjunto compartido, cu-

yos resultados se pueden ver en la Figura 6.13, en la que se exploran todos los

posibles valores del parámetro s. A medida que crece s, los resultados mejoran.

De hecho, con s = 4 se obtienen los mejores resultados, excepto para Bayes y Ge-

nome, cuyo rendimiento baja entorno a un 25 % con respecto a la firma separada

para un tamaño de 8Kbit. Por lo tanto, de manera conservadora y generalista,

se recomienda el uso de la firma de multiconjunto compartido con s = 3, que

se comporta como la separada para tamaños de filtro alto, mientras que obtiene

muy buenos resultados para los filtros de tamaño menor. Por último, se utilizó el

hashing sensible a la localidad, propuesto en la sección anterior, para mejorar

los resultados de la firma de multiconjunto compartido con s = 3. Existen dos

implementaciones posibles. En la primera, L1, el subfiltro que no comparte las

funciones de hash tiene dichas funciones trabajando con máxima granularidad, es

decir, las funciones del subfiltro que es capaz de diferenciar entre direcciones léıdas

y escritas es sensible a la localidad con máximo radio. En la segunda implemen-

tación, L2, esas funciones de hash trabajan de manera normal, sin sensibilidad

a la localidad, mientras que son los subfiltros compartidos los que obtienen la

mejora de la localidad. Los resultados obtenidos se muestran en la Figura 6.16,

que muestra un rendimiento parecido para ambas soluciones, siendo ligeramente

mejor la variante L2, y mejorando ambas al esquema sin la mejora de localidad.

En cuanto a la firma asimétrica reconfigurable, como se ha visto con anterio-

ridad, puede ser reconfigurada dinámicamente en tiempo de ejecución, en base

a las caracteŕısticas de cada transacción. Sin embargo, en nuestro caso se ha es-

cogido una configuración estática por ejecución completa del benchmark para la

evaluación del filtro. Concretamente, como el conjunto de datos de lectura de

la transacción suele ser igual o mayor que el de escritura, se experimentó con

tres valores para el parámetro de configuración: a = 5, que implica un conjunto

de lectura con 5 SRAMs, por 3 del conjunto de escritura; a = 6, que dedica 6

subfiltros al conjunto de lectura; y a = 7, con una sola SRAM para el conjunto

de escritura. Nótese que la firma asimétrica reconfigurable con a = 4 equivale

a la firma simétrica convencional. Los resultados obtenidos se muestran en la

Figura 6.11. Para cada benchmark, existe una configuración de la firma asimétri-

ca que obtiene un rendimiento parecido al de la firma multiconjunto o incluso

mejor, en el caso de Labyrinth y Kmeans, que ya se comportaban peor con la

firma multiconjunto que con la convencional. Sin embargo, la firma asimétrica

puede no ser una solución general si carecemos de los medios para obtener el

valor de configuración adecuado. Aqúı se propone el uso de un heuŕıstico con el

que se obtiene una configuración estática por ejecución que nos proporciona un
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rendimiento relativamente bueno, aunque no óptimo, el cual vendŕıa dado por

una configuración por transacción. Se trata de la razón entre la media de las

cardinalidades de los conjuntos de lectura de las transacciones y la media de las

cardinalidades de los conjuntos de escritura de las mismas. Esta media se puede

ver en la última columna de la Tabla 6.1. Si se redondea dicha razón a la razón

más cercana de las posibles configuraciones de la firma asimétrica, i.e. a = 4 im-

plica razón 1, a = 5 razón 1.67, a = 6 razón 3 y a = 7 razón 7, se puede obtener

la mejor configuración estática para la aplicación. Aśı, Bayes tiene una razón de

1.88 que es más cercana a la razón de la configuración a = 5, y obtiene los mejores

resultados con tal configuración. Genome tiene una razón de 2.88 y obtiene los

mejores resultados con la configuración a = 6. El heuŕıstico es válido para todos

los benchmarks excepto para Intruder y Vacation, que tienen una razón de 7.64

y 5.47 respectivamente, que debeŕıan ejecutarse mejor con a = 7, sin embargo,

dan mejores resultados con a = 6, aunque la diferencia no es muy acusada.

Por último, se estimó el consumo de enerǵıa, tiempo y área de las firmas

objeto de estudio y se obtuvieron los valores de la Tabla 6.3. En resumen, la

firma de multiconjunto compartido con s = 3 necesita 1.2 veces más hardware,

es un 12 % más lenta y consume un 6 % más enerǵıa que la firma paralela debido

a la SRAM de doble puerto.

A.4. Estudio de escalabilidad

Para explorar la escalabilidad de las firmas propuestas en esta tesis se uti-

lizó el benchmark EigenBench [46], especialmente desarrollado para analizar ca-

racteŕısticas ortogonales de sistemas transaccionales. Dicho benchmark se mo-

dificó para incluir la generación de trazas de direcciones de memoria con cierta

localidad espacial dada por parámetro. Se exploró la respuesta de las firmas a la

contención del sistema, el tamaño de la transacción y la concurrencia.

Con respecto a la contención, que es definida como la probabilidad de conflic-

to de una transacción, se analizaron dos configuraciones de EigenBench que se

pueden ver en la Tabla 7.1. Una con transacciones cortas y otra con transacciones

largas, que a su vez se probó con tres valores diferentes del parámetro de loca-

lidad espacial. La Figura 7.3a muestra los resultados para la configuración con

transacciones cortas. Se muestra el speedup con respecto a la versión secuencial

y la versión paralela no protegida por mecanismos de sincronización como ĺımite

máximo de paralelismo. Se puede observar que todas las variantes de las firmas

se comportan de igual manera ya que el tamaño de la firma es mucho mayor al

de la transacción (4Kbit en este caso), por lo que nuestras propuestas no dañan
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la ejecución de transacciones pequeñas. También se puede observar que la alta

contención hace que el sistema no escale. Las demás gráficas de la Figura 7.3

corresponden a transacciones largas con valores crecientes de localidad. En este

caso, nuestras propuestas mejoran el rendimiento de la firma paralela separada,

y para el caso de mayor localidad se llega a igualar el rendimiento de la firma

perfecta. Nótese que demasiada contención puede llevar al sistema HTM a ofrecer

un rendimiento peor que la versión secuencial.

La Figura 7.4 muestra los resultados del estudio del tamaño de la transacción.

Existen dos gráficas, una para una situación de transacciones con conjuntos de

lectura y escritura del mismo tamaño, y otra para una configuración asimétrica.

El tamaño de transacción vaŕıa de 40 direcciones hasta 640. Las firmas perfectas

ofrecen resultados muy similares a la versión no protegida del benchmark, sin

embargo, las firmas imperfectas, a medida que aumenta el tamaño de la transac-

ción, van produciendo falsos positivos que deterioran el rendimiento hasta el pun-

to de hacer que el rendimiento sea similar al de la versión secuencial. Nuestras

propuestas de firma mitigan en cierta medida esa bajada de rendimiento para

valores medios de tamaño de transacción, pero tienden a rendir como las firmas

paralelas convencionales a medida que crece el tamaño de la transacción.

La Figura 7.5 muestra los resultados del estudio de concurrencia en los que

se puede ver que nuestras propuestas escalan mejor que la firma convencional.

También se puede apreciar que aumentando el número de núcleos se empeora el

efecto de los falsos conflictos de las firmas imperfectas, por lo que será necesario

seguir mejorando dichas firmas para los futuros multiprocesadores.

A.5. Conclusiones y trabajo futuro

En la era de los multiprocesadores en un chip, existe un creciente interés en

encontrar nuevos paradigmas de programación que faciliten la escritura de pro-

gramas concurrentes. La memoria transaccional surge como una alternativa a la

programación convencional con cerrojos con el fin de facilitar dicha tarea y para

sacar el máximo provecho a los CMPs. De hecho, la memoria transaccional hard-

ware está ganando popularidad hasta tal punto que los principales fabricantes

de procesadores están trabajando para incluir extensiones transaccionales en sus

nuevos modelos de multiprocesador. Esta tesis se enmarca en el contexto de la

memoria transaccional hardware, campo en el que se proponen varias optimiza-

ciones del mecanismo de detección de conflictos, una parte cŕıtica para el buen

funcionamiento del sistema. Concretamente, nuestras propuestas se centran en

nuevas implementaciones de las firmas transaccionales, que pueden ser clave en
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la virtualización del sistema.

El primer esquema de firma propuesto en esta tesis es el filtro de intervalos. Se

trata de una alternativa a las firmas basadas en filtros de Bloom, que almacena

las direcciones accedidas por la transacción en forma de intervalos. El filtro de in-

tervalos logra superar el rendimiento de las firmas Bloom convencionales siempre

que las aplicaciones muestren un patrón de acceso a datos con localidad de tal

manera que las direcciones se puedan disponer en unos pocos intervalos de direc-

ciones contiguas. Este es el caso de algunos benchmarks de la suite STAMP como

Kmeans y Labyrinth. Sin embargo, esta firma alternativa no consigue mejorar el

rendimiento de las firmas con filtro de Bloom cuando el patrón de acceso forma

muchos intervalos pequeños o muestra grandes cantidades de accesos aleatorios,

ya que se implementa como una memoria asociativa con un número reducido de

entradas para mantener un tamaño asequible. Como consecuencia, el filtro de in-

tervalos no es una solución general pero podŕıa ser una opción a tener en cuenta

en caso de que se sepa de antemano el patrón de acceso de la aplicación.

La siguiente contribución de esta tesis sigue la ĺınea de aprovechar la loca-

lidad, pero esta vez se basa en los filtros de Bloom, que nos proporcionan una

solución más general que la que se consigue con los filtros de intervalos. Se trata

de las firmas sensibles a la localidad, que definen nuevos mapas para las funciones

hash de los filtros que reducen el número de bits que se insertan en estos. Aśı, di-

recciones de memoria cercanas entre śı comparten ciertos bits del filtro de Bloom,

y como resultado, los falsos conflictos se reducen para aquellas transacciones que

muestran localidad espacial, mientras que no se afecta a las transacciones que

no muestran dicha localidad. Se proponen varias formas de la firma sensible a

localidad que rinden de igual o mejor manera que las firmas convencionales. Sin

embargo, encontramos que las versiones δP , que definen funciones a trozos con

diferente granularidad por hash, son mejores que el resto puesto que se comportan

de manera más uniforme independientemente del benchmark. Por último, como

las firmas sensibles a la localidad se basan en nuevos mapas para las funciones

hash, su implementación no requiere hardware extra, e incluso se puede ahorrar

hasta un 3 % en puertas XOR.

Las siguientes contribuciones de esta tesis tratan de solventar el problema

de la asimetŕıa en los conjuntos de lectura y escritura de las transacciones. Las

firmas convencionales disponen de filtros separados de igual tamaño para man-

tener los conjuntos de direcciones. Sin embargo, las transacciones muestran con

frecuencia cierta disparidad en la cardinalidad de dichos conjuntos, lo que intro-

duce ineficiencias en el uso de las firmas. La primera optimización que se propone

en este contexto se ha llamado firma multiconjunto. Se utiliza un solo filtro de

Bloom con doble puerto para mantener los dos conjuntos de direcciones, tanto el
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de las lecturas como el de las escrituras, por lo que los falsos positivos tienden a

igualarse en ambos conjuntos. Se encuentra una mejora debido al mejor aprove-

chamiento del filtro, excepto para las transacciones cuyo tamaño excede un cierto

umbral. Puesto que las memorias de doble puerto necesitan más hardware para

su implementación, se propone una mejora que hemos llamado firma comparti-

da multiconjunto que hace que ciertas partes del filtro sólo tengan una función

compartida entre los conjuntos de lectura y escritura. Los resultados, incluyendo

la mejora de la localidad antes mencionada, pueden mejorar a las firmas conven-

cionales hasta en un 47 % de media, puesto que una gran cantidad de direcciones

accedidas dentro de las transacciones se leen y se escriben al mismo tiempo.

Otra aproximación para el tratamiento de la asimetŕıa en los conjuntos de

datos transaccionales es nuestra firma asimétrica reconfigurable. Se parte de una

firma paralela convencional con cada filtro dividido en subfiltros, uno por función

hash. Aśı, y por medio de un registro de máscara de configuración, se pueden

asignar los diferentes subfiltros para que formen parte de la firma de lectura o de

escritura, pudiendo tener una firma de lectura más grande, igual o más pequeña

que la de escritura. La configuración se puede realizar por transacción o por apli-

cación. Nosotros proponemos una configuración por aplicación que implica un

profiling de la ejecución para obtener la razón resultante de dividir la cardinali-

dad media del conjunto de lectura y de escritura de las transacciones. Con este

heuŕıstico se obtiene un buen resultado de las firmas asimétricas reconfigurables,

aunque no sea la solución óptima.

Por último, se muestra un estudio comparativo de la escalabilidad de nues-

tras soluciones con respecto a la convencional en términos de la contención del

sistema, el tamaño de la transacción y el número de transacciones concurren-

tes. Para ello se ha usado un nuevo benchmark para el estudio de caracteŕısticas

ortogonales en sistemas de memoria transaccional, llamado EigenBench, que ha

sido modificado para incluir el modelado de localidad de referencia espacial. Los

resultados obtenidos muestran que la contención puede dañar seriamente la eje-

cución de código transaccional, hasta el punto de que la versión paralela sea más

lenta que la versión serie. Nuestras propuestas amortiguan la degradación del

rendimiento, sobretodo cuando la aplicación muestra cierta cantidad de localidad

espacial. Sin embargo, tanto la firma perfecta como las imperfectas convergen,

limitando aśı la posibilidad de mejora en el desarrollo de firmas imperfectas. Con

respecto al tamaño de la transacción, nuestras propuestas de firma mejoran los

resultados de la firma convencional en la mayoŕıa de los casos. Sin embargo, tien-

den a igualar el tiempo de ejecución de la firma convencional conforme crece

el tamaño de la transacción, que daña seriamente la ejecución. Los resultados

también sugieren que los sistemas de memoria transaccional impĺıcitos, aunque
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más fáciles de programar, podŕıan llevar a una mala configuración de las firmas

asimétricas si dicha configuración se realiza partiendo de los parámetros de la

aplicación en lugar de profiling, ya que muchas variables no transaccionales se

toman como transaccionales en estos sistemas. También se puede observar que el

efecto de los falsos conflictos en las firmas imperfectas aumenta con el número de

transacciones concurrentes, aunque nuestras mejoras hacen que el sistema escale

mejor.

En esta tesis se proponen una serie de optimizaciones para las firmas de de-

tección de conflictos que ayudan en la virtualización del sistema transaccional.

Sin embargo, existe trabajo por hacer en este campo. Para terminar, se apuntan

los siguientes caminos de trabajo futuro:

Nuestra firma asimétrica reconfigurable ha sido evaluada con una configu-

ración por aplicación dando buenos resultados. Sin embargo, vale la pena

explorar la reconfiguración por transacción, puesto que el tamaño de los

conjuntos de lectura y escritura puede cambiar de una transacción a otra

dentro de la misma aplicación. Por un lado, se puede utilizar profiling pa-

ra obtener la razón entre el conjunto de lectura y el de escritura de cada

transacción y configurar la firma en el comienzo de las mismas. Por otro

lado, se puede explorar una solución en la que el sistema transaccional re-

configure la firma basándose en información obtenida durante la ejecución,

como la historia de transacciones previas o estad́ısticas de la firma en el

aborto.

Ciertos resultados obtenidos en esta tesis exponen el problema de la alta

contención, que puede llevar a la versión transaccional a ejecutarse más

lenta que la versión serie. En [9] se estudian las patoloǵıas que pueden

afectar al rendimiento de los sistemas de memoria transaccional hardware,

y esta ĺınea de investigación sigue abierta con varios trabajos que están

al tanto del problema de la contención [102, 73]. En el contexto de las

firmas para detección de conflictos, se podŕıa estudiar cómo detectar si la

firma está cediendo demasiados falsos positivos, y proceder a la posterior

serialización de la ejecución para evitar la pérdida de rendimiento.

Los sistemas transaccionales impĺıcitos insertan direcciones innecesarias en

la firma, como variables privadas, que incrementan el número de falsos po-

sitivos. Yen et al. [111] y Sanyal et al. [93] atajan el problema proporcionan-

do nuevas construcciones al programador para reservar memoria privada o

compartida. Pero el programador tiene que extremar las precauciones ya

que un error podŕıa provocar la incorrección del programa. Por otro lado,
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los sistemas transaccionales expĺıcitos pueden hacer que la programación

sea compleja [88], lo que contradice el principal propósito de la memo-

ria transaccional. La detección automática de accesos a variables privadas

podŕıa ser una ĺınea de investigación para la mejora del rendimiento de las

firmas mientras que se mantiene la programabilidad.

Los sistemas transaccionales cuya detección de conflictos se basa en firmas

con filtros de Bloom no pueden confiar en las firmas para decidir si los

bloques de memoria escritos en la transacción tienen que ser almacenados

en el log, puesto que un falso positivo puede causar que no se almacene un

bloque que debeŕıa ser almacenado. Estos sistemas necesitan un filtro para

el log que mantenga los bloques que han sido recientemente almacenados

en el log para evitar que se almacenen repetidamente. Estudiar el efecto

en el rendimiento del filtro de log seŕıa interesante, aśı como estudiar una

posible ayuda de la firma de detección de conflictos.

La memoria transaccional es un paradigma prometedor para simplificar el

desarrollo de aplicaciones paralelas. No esta claro lo que le depara el futuro,

pero la industria del hardware ya está apostando por ella. Esta tesis es una

pequeña contribución a la memoria transaccional, con la esperanza de que ayude

a clarificar su futuro.
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