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Abstract

Human action classification is an important task in computer vision. The Bag-of-Words model
uses spatio-temporal features assigned to visual words of a vocabulary and some classification
algorithm to attain this goal. In this work we have studied the effect of reducing the vocabulary
size using a video word ranking method. We have applied this method to the KTH dataset
to obtain a vocabulary with more descriptive words where the representation is more compact
and efficient. Two feature descriptors, STIP and MoSIFT, and two classifiers, KNN and SVM,
have been used to check the validity of our approach. Results for different vocabulary sizes show
an improvement of the recognition rate whilst reducing the number of words as non-descriptive
words are removed. Additionally, state-of-the-art performances are reached with this new compact
vocabulary representation.

Keywords: Feature Selection and Extraction, Classification, Support Vector Machines, Computer
Vision.

1 Introduction

Many applications in computer vision, such as surveillance, human-computer interfaces
and semantic video annotation, are based on human action categorization. Thus, action
recognition is an active research field in computer vision.

In the literature, two main approaches for human action recognition are used: holistic
and part-based representations. The holistic representation focus on the whole body of
the person, trying to search for characteristics such as contours or pose. On the other
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Fig. 1: Bag-of-Words framework. Training stage is applied to the training set to obtain
a codebook and a classifier. Testing stage is applied to the test set using the
previously computed codebook and classifier to obtain a label for every video.

hand, part-based representation consists of two steps: feature detection phase, in which
space-time interest points are searched for in the video, and the feature description phase,
in which a robust description of the area around them is computed and a model based on
independent features (Bag-of-Words) or a model that can also contain structural informa-
tion is built.

The creation of a vocabulary for a Bag-of-Words model requires clustering the features
descriptions detected in the training videos. Clustering is an unsupervised process and
usually generates both descriptive and non-descriptive words for the vocabulary. The
aim of this paper is to study the influence of the selection of more descriptive words
for vocabulary creation as regards action detection accuracy. As will be shown in the
experimental results, accuracy is improved using reduced vocabularies.

To check the validity of our results we have tried different feature descriptors and classi-
fiers. We have selected two well-known feature descriptors, STIP [1] and MOSIFT [2], and
two popular classifiers, k-nearest neighbor (KNN) and support vector machines (SVM),
in order to compare our results with other works.

The rest of the paper is organized as follows. Section 2 reviews visual vocabulary
creation for action categorization. The algorithm for vocabulary selection is introduced
in Section 3. Section 4 evaluates the impact of vocabulary reduction on the accuracy of
action categorization. Finally, Section 5 concludes the paper.

2 Vocabulary Creation

The Bag-of-Words (BoW) model, depicted in Fig. 1, has been used in many multimedia
related tasks such as image retrieval, object recognition or video event detection. With
this model an image is represented as a collection of visual words that belong to a visual



2 Vocabulary Creation 3

vocabulary. This vocabulary is created in a training stage by clustering a large number of
local feature descriptors. Then, a BoW representation is computed as a histogram with
the frequency of occurrence of every visual word in the vocabulary, and finally, a Näıve
Bayes classifier, a support vector machine (SVM), or any other learning method that has
been previously trained in the training stage can be used for classification. The codebook
of visual words and the classifier are computed only in the training stage.

One of the main disadvantages of this model is that spatial and temporal constraints
are ignored, thus some authors as [3] have proposed the use of correlograms to capture the
co-occurrence of features. This correlograms can be used to generate descriptive visual
words and visual phrases that can be more effective in terms of efficiency and accuracy.

The BoW model has been also used for recognizing human actions. Local spatio-
temporal features such as STIP or MoSIFT are computed to obtain the video vocabulary,
and bigrams with the co-occurrence of two video words can be selected to enrich the
vocabulary.

Space-Time Interest Points (STIP) is a feature detector proposed by Laptev in [1]. It
extends the idea of the Harris interest point detector to the spatio-temporal domain. It
builds a scale-space representation of the sequence by convolution with a spatio-temporal
separable Gaussian kernel that has independent spatial and temporal variances. Then, a
spatio-temporal second order matrix is computed and an extended version of the Harris
corner function is used to detect the interest points. Different spatial and temporal scales
can be used, and a Laplace operator can be applied over scales to compute scale-adapted
space-time interest points. This method can capture the temporal extent of the features,
allowing to distinguish between fast and slow movements.

These points are represented using histograms of oriented gradient and optical flow.
For each point a volume proportional to the detection scales and centered at the detection
point is subdivided in several cuboids, and for each cuboid a histogram of oriented gra-
dient (HoG) and optical flow (HoF) is computed. These histograms are normalized and
concatenated to form the interest point descriptor.

The MoSIFT algorithm [2] is another well-known method for extracting and describing
interest points. It detects spatially distinctive interest points with substantial motion. It
uses the SIFT algorithm to extract interesting points in the spatial domain, and selects
those points with a ‘sufficient’ amount of optical flow around them. Later, these points
are described using a combination of a histogram of optical flow (HoF) and a histogram
of gradients (HoG).

The scale invariant SIFT points are computed using a scale-space kernel: a pyramid of
Difference of Gaussians (DoG) images is obtained, and local extrema across adjacent scales
are used as the interest points. Then, a multiple-scale optical flow pyramid is built over the
DoG pyramid and those interest points with sufficient motion are selected. This method
is not invariant to temporal scale, and consequently no motion constraint is imposed in
the interest points.

After computing the descriptors of interest points, a codebook of visual words is gen-
erated. Visual words are obtained by clustering the interest points using k-means or any
other unsupervised method. Unfortunately, these methods do not lead to an effective and
compact vocabulary because many unnecessary and nondescriptive words are generated.
This can be alleviated by applying a codebook reduction step where some ranking al-
gorithm that sort the words by their descriptive quality can be used to select the most
descriptive words. For example, in image retrieval, a ranking algorithm called Visual-
WordRank was proposed in [4] to select those words that appear more frequently in some
visual category, and also co-occur with other frequent words in that visual category. These
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Fig. 2: Number of visual words used in each KTH action category for different STIP
descriptor vocabulary sizes (600, 1000, 4000, 10000 VWs).

words, called Descriptive Visual Words (DVW), form a significantly lesser vocabulary and
computational complexity is reduced as well. However, the vocabulary reduction presented
in [4] is applied only to large databases of images. In this paper we will apply their method
to human action categorization in videos and study the impact of vocabulary reduction
on classification accuracy.

The codebook obtained in the previous step can be used to compute a histogram
representation with the frequency of occurrence of every visual word in this vocabulary.
These histograms are computed for every video to train a classifier such as a support
vector machine (SVM). For multi-class classification the one-versus-all rule can be used to
obtain a classifier for each separate class.

Finally, in the testing stage, the same feature extractor and descriptor is used in con-
junction with the codebook computed in the training step to obtain a BoW representation
that is classified using the trained SVM. The label of the classifier with the highest re-
sponse is assigned to the test video and compared with the groundtruth to obtain accuracy
values.

3 Vocabulary Reduction

It has been proven that the K-means-based clustering of visual words does not typically
generate an effective and compact visual vocabulary. In addition, the descriptive power
of visual vocabularies is influenced by the number of visual words used. The more visual
words are extracted the better performance is achieved. However, the performance will
be saturated when the number of words reaches certain levels [5]. Another consequence of
using more visual words is that the relative number of visual words used in each category
decreases. This behaviour is shown in Fig. 2, where the KTH action dataset and the STIP
descriptor has been employed. This Figure depicts the number of different visual words
used in the representation of different actions, sorted in ascending order. It is clearly
shown that each category is described only with a portion of the total vocabulary. In
other words, eliminating VWs from the vocabulary by selecting the more informative ones
allows us to obtain a more efficient vocabulary.

Thus, the vocabulary reduction procedure will select the visual words that are more
descriptive to certain actions. In this way, the selected visual words are expected to fulfil
the following criteria:

• For a given action, the selected visual words should appear more frequently in this
action. Also, they should be less common in videos that do not contain such an
action.

• They should be frequently located on the moving person, even though they are
surrounded by static objects or a cluttered background.
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The two requisites conform to the TF-IDF weighting of information retrieval theory.
These two clues are combined by the VisualWordRank algorithm [4], which leverages the
idea of well-known PageRank [6]. In PageRank, a matrix is built to record the inherent
importance of different webpages and the relationships among them. Iterations are carried
out to update the weight of each webpage based on this matrix. After several iterations,
the weights will stay stable and the final significance of each webpage is obtained combining
both its inherent importance and the relationships with other webpages [6].

Based on this idea, we build matrix R(C) for each action category to combine the
frequency and co-occurrence cues for visual vocabulary reduction. The elements in the
diagonal of R(C) are defined as:

R
(C)
i,i = f

(C)
i / ln(Fi) (1)

where i is a VW and Fi and f
(C)
i denote its average frequency in all categories and the

within-category frequency in action category C, respectively. R
(C)
i,i represents the inherent

importance of visual word i. Thus, larger values of R
(C)
i,i means that i is more important

to category C.

The nondiagonal element R
(C)
i,j is defined as the average co-occurrence frequency of

visual words i and j in action category C. Therefore, if visual word i and j frequently

co-occur in the category C, R
(C)
i,j will present a high value. In order to detect the co-

occurrence of word pairs, a spatial distance d is defined. A visual word pair co-occurrence
is identified if the distance between these words is less than d. Because interest points
may have various scales, the value of d is computed with

d = scalei ×D (2)

to achieve scale invariance, where scalei is the scale of the interest point from which the
instance of visual word i is computed, and D a new parameter. In this work, experiments
have shown that D = 4 is a good selection.

After computing R(C), its elements are normalized. Each visual word in the vocab-
ulary is initially equally ranked and an iterative rank-updating is started. During the
iterations, visual words having large inherent importance and strong co-occurrence (with
large weights) will be highly ranked. After several iterations, the more relevant visual
words can be identified by selecting the top N ranked or choosing the ones with rank val-
ues larger than a threshold. The detailed description of the VisualWordRank is presented
in Algorithm 1 [4].

4 Experimental Results

In order to study the impact on accuracy of the vocabulary reduction in human action
video classification, several tests have been performed using the KTH actions dataset [7].
This dataset consists of six types of human actions: walking, jogging, running, boxing,
hand waving and hand clapping, performed several times by 25 subjects in four different
scenarios: outdoors (s1), outdoors with scale variation (s2), outdoors with different clothes
(s3) and indoors (s4). Fig. 3 shows frames examples of these videos with interest points
extracted by STIP (yellow thick circles) and MoSIFT (green thin circles) superimposed.
Note that the background is homogeneous and static in most sequences. The sequences
were downsampled to the spatial resolution of 160×120 pixels and have a length of four
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Algorithm 1 VisualWordRank [4]

Input: R(C); maximum iteration time: maxiter.

Output: The rank value of each VW to the category C:

Ranki
(C), i = 1.....V W

(C)
num

Initialize each element in the VW
(C)
num × 1 sized rank vector OldRank(C) as 1.

Normalize the sum of each column of R(C) as 1.

Set iter ← 0.

While iter < maxiter

NewRank(C) ← R(C) · OldRank(C)

If
(∣∣NewRank(C) −OldRank(C)

∣∣ ≤ ϵ
)

break

End If

OldRank(C) ← NewRank(C)

iter ++

End While

Rank(C) ← NewRank(C)

seconds on average. We follow the leave-on-out cross validation (LOOCV) evaluation
method as it facilitates the performance comparison among different approaches.

Each video sequence is represented as a bag of spatial-temporal features using STIP
and MoSIFT descriptors. Descriptors are extracted running the implementations freely
available on Internet for STIP a and MoSIFT b with the default parameters. The detected
spatio-temporal features, about 500,000 and 1 million respectively, are first quantized
into visual words and the video is then represented as the frequency histogram over the
visual words. Vocabularies are constructed with K-means clustering. Eight independent
executions of the K-means algorithm are performed and the run that finds out the best
clustering is selected. To limit the complexity, we cluster a third of the training features
randomly selected. Features are assigned to their closest vocabulary word using Euclidean
distance. The resulting histograms of visual word occurrences are used as video sequence
representations.

Vocabularies of different sizes (200, 600, 1000, 4000 and 10,000 visual words) are
created using a different number of clusters for the K-means executions. These values
are similar to several implementations found in the literature such as [2], [8], [9] and [10].
The vocabulary of 10,000 visual words is unusually large for this dataset. However, it is
created in order to test the accuracy obtained when it is reduced to smaller sizes.

Several reduced instances of the initial vocabularies are generated by applying different
thresholds to the maximum VisualWordRank value. In order to clearly illustrate the
discriminative abilities of the reduced visual vocabularies, a simple classification based on
the k nearest neighbor (KNN) and a histogram intersection metric is used. The training
set has been employed to establish the most suitable value for k (k=5). Additionally, a
Support Vector Machine (SVM), using the implementation in [11], has been utilized to
classify actions to prove the entire performance of the vocabulary reduction algorithm in
a real framework.

a www.di.ens.fr/ laptev/download.html
b lastlaugh.inf.cs.cmu.edu/libscom/downloads.htm
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Tab. 1: Accuracies for the STIP descriptor obtained with different vocabulary sizes and

their reductions for action classification with KNN in the KTH videos database.

Best results are marked in bold.
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Tab. 2: Accuracies for the MoSIFT descriptor obtained with different vocabulary sizes

and their reductions for action classification with KNN in the KTH videos

database. Best results are marked in bold.
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Tab. 3: Accuracies for the STIP descriptor obtained with different vocabulary sizes and

their reductions for action classification with SVM in the KTH videos database.

Best results are marked in bold.
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Tab. 4: Accuracies for the MoSIFT descriptor obtained with different vocabulary sizes

and their reductions for action classification with SVM in the KTH videos

database. Best results are marked in bold.
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Fig. 3: Examples of interest points extracted by STIP (yellow thick circles) and MoSIFT

(green thin circles) for different types of actions (columns) and scenarios (rows) of

the KTH dataset.

Tables 1, 2, 3 and 4 summarize the most relevant results obtained. For each vocab-
ulary (200, 600, 1000, 4000 and 10,000 words), the accuracy obtained with different size
reductions and the percentage that these reductions represent with respect to the original
vocabulary size are shown. As a general rule, accuracy is maintained and even increased
with vocabulary size reductions in the range 20%-50%. However, this tendency is more
noticeable with a KNN classifier than with the SVM classifier and with the STIP detector
than with the MoSIFT detector. In the first situation, most people would agree that the
SVM learning capabilities compensate the redundancies in the vocabularies. In the second
one, it could be argued that the MoSIFT descriptor originates less redundant vocabular-
ies. This general behaviour is particulary different in the case of a vocabulary size of 4000
words, where the best accuracies are reached and there is no room for much improvement.
Additionally, more drastic vocabulary size reductions can be achieved if we can accept a
slight loss in accuracy.

Finally, in order to demonstrate the validity of our method, Table 5 shows the per-
formance reported by previous works using a similar experimental setup, i.e., classifying
the whole videos rather that the different action sequences they contain and using the
leave-on-out validation. As stated in [10], there are many variations in terms of experi-
ment setups with other different methods, so a precise comparison is not possible. There
are only two approaches outperforming the method proposed here. On one hand, Gao
and Chen [10] use a parameter configuration for the extraction of MoSFIT descriptors
specifically optimized for the KHT dataset that is not discussed in the paper. We believe
that our results could outperform theirs by using their parameters for MoSIFT descriptors
computation. By the other hand, Lui [12] solution needs additional training information
manually annotated.



5 Conclusions 12

Tab. 5: Comparison with other methods all using the KTH dataset with a similar experi-

mental set-up (LOOCV).

Method Avg. Accuracy

Lui et al. 2010 [12] 97.00

Gao and Chen et al. 2010 [10] 96.33

Our method (STIP 3614 VWs) 96.00

Chen and Hauptmann 2009 [2] 95.83

Our method (MoSIFT, 3855 VWs) 95.00

Bergonzio et al. 2012 [13] 94.33

Liu and Shah 2008 [14] 94.20

Sun et al. 2009 [15] 94.00

Wong and Cipolla 2007 [16] 86.60

Niebles et al. 2008 [17] 81.50

5 Conclusions

The results presented in this paper proves that a reduction in the vocabulary size for
human action description can improve the classification accuracy.

The experimental validation of the vocabulary reduction algorithm for action classi-
fication presented here is promising. However, an evaluation with more complex human
action video databases is still necessary in order to obtain concluding results. We expect
an improvement in the accuracy of the classifiers, as the complexity of these videos will
originate richer vocabularies.

Additionally, further classification accuracy improvements are expected with the in-
clusion in the actions description of more spatial and temporal relationships among visual
words.
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[9] H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid, “Evaluation of local
spatio-temporal features for action recognition,” in British Machine Vision Confer-
ence, 2009, pp. 127–137.

[10] Z. Gao, M.-Y. Chen, A. G. Hauptmann, and A. Cai, “Comparing evaluation protocols
on the KTH dataset,” in Proceedings of the First international conference on Human
behavior understanding, 2010, pp. 88–100.

[11] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 1–27, 2011, software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[12] Y. M. Lui, J. R. Beveridge, and M. Kirby, “Action classification on product mani-
folds,” Computer Vision and Pattern Recognition, IEEE Computer Society Confer-
ence on, vol. 0, pp. 833–839, 2010.

[13] T. H. Thi, L. Cheng, J. Zhang, L. Wang, and S. Satoh, “Structured learning of
local features for human action classification and localization,” Image and Vision
Computing, vol. 30, no. 1, pp. 1 – 14, 2012.

[14] J. Liu and M. Shah, “Learning human actions via information maximization,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp.
1–8.

[15] X. Sun, M. Chen, and A. Hauptmann, “Action recognition via local descriptors and
holistic features,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009, pp. 58–65.

[16] S.-F. Wong and R. Cipolla, “Extracting spatiotemporal interest points using global
information,” in IEEE International Conference on Computer Vision (ICCV), oct.
2007, pp. 1 –8.

[17] J. C. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised learning of human action
categories using spatial-temporal words,” Int. J. Comput. Vision, vol. 79, no. 3, pp.
299–318, 2008.


